
LEARN C
PROGRAMMING

CH Srilaxmi

Author Profile:

Prof. Srilakshmi Cherukuri working as an Assistant Professor & HoD in
the CSE(AI &ML)Department at Narsimha Reddy Engineering College,
Hyderabad. She secured a Master of Technologyin CSE. She is persuing
a Ph.D., in GITAM University,Hyderabad, India. She is in the fieldof
teachingprofession for more than 18 years. She has presented more
than 25 papers in National andInternational Journals, Conference and
Symposiums. Her main area of interest includes DeepLearningand
Image Processing. Throughout her career, Ch Srilakahmi has been
passionate about teachingandsharingherknowledge with others. She
has conducted numerous workshops and seminars on
programminglanguages, with a particular focus on C programming.
Ch Srilakshmi's deep understanding of C programming stems fromher
hands-onexperienceindeveloping software solutions for diverse
applications, including embedded systems, operatingsystems, and
game development. Her practical approach to teaching,
combinedwithreal-worldexamples, makes complex concepts easy to
understand for beginners. "Learn C Programming" is Ch Srilakshmi's
latest endeavor to make programmingaccessibletoenthusiasts and
aspiring developers. In the book, She distills her years of
experienceintoacomprehensive guide that covers everything from the
basics of C syntax to advancedprogrammingtechniques. Ch
Srilakshmi's commitment to helping others succeed in programming is
evident inher'sclearexplanations, step-by-step instructions, and
practical exercises designed to reinforce learning. Whetheryou're a
student, a professional looking to expand your skill set, or simply
someone curiousabouttheworld of programming, "Learn C
Programming" is the perfect resource to kickstart your journey. In
addition to writing and teaching, Ch Srilakshmi enjoys hiking, playing
the guitar, andspendingtimewith her family in her spare time.

PREFACE

Welcome to "Learn C Programming"!

C programming language holds a special place in the world of computer science and software

development. Its simplicity, efficiency, and versatility have made it a cornerstone of modern

computing. Whether you're an aspiring programmer taking your first steps into the vast world

of coding or a seasoned developer looking to deepen your understanding, this book is crafted

to be your guide.

In this comprehensive guide, we embark on a journey through the fundamental concepts

and principles of C programming. From the basics of syntax and control structures to

advanced topics such as memory management and data structures, each chapter is

meticulously designed to build upon the previous one, providing you with a solid foundation

of knowledge.

But this book is more than just a compilation of code snippets and theoretical explanations.

It's a companion on your learning path, offering hands-on exercises, real-world examples,

and practical insights to reinforce your understanding and sharpen your skills. Whether

you're exploring the intricacies of pointers or unraveling the mysteries of function pointers,

each concept is presented in a clear, concise manner, empowering you to grasp even the

most complex concepts with ease.

As you progress through these pages, remember that mastery of C programming is not merely

about memorizing syntax or regurgitating algorithms. It's about cultivating a mindset of

problem-solving, creativity, and continuous learning. It's about embracing the challenges

that come with mastering a powerful tool like C and leveraging its capabilities to create

innovative solutions to real-world problems.

So, whether you're embarking on your first "Hello, World!" program or delving into the depths

of multi-threaded programming, let this book be your trusted companion on your journey to

becoming a proficient C programmer. Let's dive in and unlock the boundless possibilities that

await you in the world of C programming.

Happy coding!

Ch Srilaxmi

Narsimha Reddy Engineering College NRCM

LEARN C PROGRAMMING ... 14

C PROGRAMMING KEYWORDS AND IDENTIFIERS .. 21

Character set .. 21

Alphabets .. 22

Digits .. 22

Special Characters .. 22

C Keywords .. 22

C Identifiers ... 23

Rules for writing an identifier ... 23

Variables .. 23

Rules for naming a variable in C .. 24

Constants/Literals: A constant is a value or an identifier whose value cannot be altered in a program. For example: 1, 2.5,

"C programming is easy", etc. ... 24

1. Integer constants ... 24

2. Floating-point constants .. 25

3. Character constants ... 25

4. Escape Sequences ... 25

5. String constants ... 26

6. Enumeration constants .. 26

C PROGRAMMING INPUT OUTPUT (I/O): PRINTF() AND SCANF() .. 29

Example #1: C Output ... 29

Example #2: C Integer Output .. 29

#include <stdio.h>int main(){ .. 29

Example #3: C Integer Input/Output .. 29

Example #3: C Floats Input/Output .. 30

Example #4: C Character I/O .. 30

Little bit on ASCII code ... 30

Example #5: C ASCII Code ... 30

Example #6: C ASCII Code ... 31

More on Input/Output of floats and Integers .. 31

Narsimha Reddy Engineering College NRCM

Example #7: I/O of Floats and Integers .. 31

C PROGRAMMING INPUT OUTPUT (I/O): PRINTF() AND SCANF() .. 32

Example #1: C Output ... 32

Example #2: C Integer Output .. 33

Example #3: C Integer Input/Output .. 33

Example #3: C Floats Input/Output .. 33

Example #4: C Character I/O .. 33

Little bit on ASCII code ... 34

Example #5: C ASCII Code ... 34

Example #6: C ASCII Code ... 34

More on Input/Output of floats and Integers .. 35

Example #7: I/O of Floats and Integers .. 35

C PREPROCESSOR AND MACROS .. 35

Including Header Files ... 36

Macros using #define ... 36

Example 1: Using #define preprocessor ... 36

Example 2: Using #define preprocessor ... 37

Conditional Compilation .. 38

Uses of Conditional .. 38

How to use conditional? ... 38

Predefined Macros ... 39

Example #3: predefined Macros ... 40

C STANDARD LIBRARY FUNCTIONS ... 40

Advantages of using C library functions ... 41

1. They work ... 41

2. The functions are optimized for performance ... 41

3. It saves considerable development time ... 41

3. The functions are portable .. 41

Use Of Library Function To Find Square root ... 41

C Library Functions Under Different Header File ... 42

Narsimha Reddy Engineering College NRCM

Example #1: Arithmetic Operators ... 43

Increment and decrement operators ... 44

Example #2: Increment and Decrement Operators ... 45

C Assignment Operators .. 45

Example #3: Assignment Operators .. 46

C Relational Operators ... 47

Example #4: Relational Operators .. 47

C Logical Operators .. 48

Example #5: Logical Operators .. 49

Bitwise Operators ... 50

Other Operators ... 50

Comma Operator .. 50

The sizeof operator ... 50

Example #6: sizeof Operator .. 51

C-Ternary Operator (?:) .. 51

C IF, IF...ELSE AND NESTED IF...ELSE STATEMENT .. 52

C if statement ... 52

Flowchart of if statement .. 53

Example #1: C if statement ... 53

C if...else statement .. 54

Syntax of if...else .. 54

Flowchart of if...else statement ... 54

Example #2: C if...else statement ... 55

Nested if...else statement (if...elseif....else Statement) .. 56

Example #3: C Nested if...else statement ... 56

C PROGRAMMING FOR LOOP ... 57

for Loop .. 58

How for loop works? .. 58

for loop Flowchart .. 58

Example: for loop ... 58

Narsimha Reddy Engineering College NRCM

C PROGRAMMING WHILE AND DO...WHILE LOOP .. 59

while loop ... 60

How while loop works? .. 60

Flowchart of while loop .. 60

Example #1: while loop .. 60

do...while loop... 61

do...while loop Syntax .. 61

How do...while loop works? ... 62

Example #2: do...while loop ... 62

C PROGRAMMING BREAK AND CONTINUE STATEMENT ... 63

break Statement ... 63

Syntax of break statement ... 63

Flowchart of break statement .. 63

How break statement works? .. 64

Example #1: break statement .. 64

continue Statement ... 65

Syntax of continue Statement ... 65

Flowchart of continue Statement .. 65

How continue statement works? ... 66

Example #2: continue statement ... 66

Syntax of switch...case .. 68

switch Statement Flowchart .. 69

Example: switch Statement// Program to create a simple calculator// Performs addition, subtraction, multiplication or division

depending the input from user .. 69

C GOTO STATEMENT ... 71

Syntax of goto statement .. 71

Example: goto Statement .. 72

Reasons to avoid goto statement ... 73

C PROGRAMMING FUNCTIONS .. 73

Types of functions in C programming ... 73

Narsimha Reddy Engineering College NRCM

Standard library functions ... 74

User-defined functions .. 74

How user-defined function works? .. 74

Advantages of user-defined function .. 76

C PROGRAMMING USER-DEFINED FUNCTIONS ... 77

Example: User-defined function .. 77

Function prototype ... 78

Syntax of function prototype .. 78

Calling a function ... 78

Syntax of function call .. 78

Function definition ... 78

Passing arguments to a function .. 79

Return Statement ... 79

Syntax of return statement .. 80

TYPES OF USER-DEFINED FUNCTIONS IN C PROGRAMMING ... 80

Example #1: No arguments passed and no return Value .. 81

Example #2: No arguments passed but a return value .. 82

Example #3: Argument passed but no return value .. 83

Example #4: Argument passed and a return value ... 84

Which approach is better? ... 85

C PROGRAMMING RECURSION .. 85

How recursion works? .. 85

Example: Sum of Natural Numbers Using Recursion .. 86

Advantages and Disadvantages of Recursion ... 88

SCOPE AND LIFETIME OF A VARIABLE. ... 88

Local Variable .. 89

Global Variable .. 89

Example #1: External Variable ... 89

Register Variable ... 89

Narsimha Reddy Engineering College NRCM

Static Variable .. 90

Example #2: Static Variable ... 90

C PROGRAMMING ARRAYS .. 90

How to declare an array in C? ... 91

Elements of an Array and How to access them?.. 91

How to initialize an array in C programming? ... 91

How to insert and print array elements? ... 92

Example: C Arrays .. 92

Important thing to remember when working with C arrays .. 93

C PROGRAMMING MULTIDIMENSIONAL ARRAYS .. 93

How to initialize a multidimensional array?.. 94

Initialization of a two dimensional array .. 94

Initialization of a three dimensional array. ... 94

Example #1: Two Dimensional Array to store and display values ... 95

Example #2: Sum of two matrices using Two dimensional arrays ... 97

Example 3: Three Dimensional Array .. 98

HOW TO PASS ARRAYS TO A FUNCTION IN C PROGRAMMING? ...100

Passing One-dimensional Array In Function .. 100

Passing an entire one-dimensional array to a function ... 101

Passing Multi-dimensional Arrays to Function ... 101

#Example: Pass two-dimensional arrays to a function ... 101

C PROGRAMMING POINTERS AND ARRAYS ...103

Relation between Arrays and Pointers .. 103

Example: Program to find the sum of six numbers with arrays and pointers ... 104

C CALL BY REFERENCE: USING POINTERS [WITH EXAMPLES] ..105

Example of Pointer And Functions ... 105

C DYNAMIC MEMORY ALLOCATION ...106

C malloc() ... 107

Syntax of malloc() .. 107

Narsimha Reddy Engineering College NRCM

C calloc() .. 107

Syntax of calloc() .. 107

C free() ... 108

syntax of free() .. 108

Example #1: Using C malloc() and free() ... 108

Example #2: Using C calloc() and free() .. 109

C realloc() ... 110

Syntax of realloc() .. 110

Example #3: Using realloc() ... 110

C PROGRAMMING STRUCTURE ..110

Structure Definition in C ... 111

Syntax of structure .. 111

Structure variable declaration ... 111

Accessing members of a structure ... 112

Example of structure ... 112

Keyword typedef while using structure .. 114

Structures within structures .. 115

Passing structures to a function ... 115

C PROGRAMMING STRUCTURE AND POINTER ...115

Accessing structure's member through pointer ... 116

1. Referencing pointer to another address to access the memory_Consider an example to access structure's member through

pointer. .. 116

2. Accessing structure member through pointer using dynamic memory allocation .. 117

HOW TO PASS STRUCTURE TO A FUNCTION IN C PROGRAMMING?118

Passing structure by value .. 119

Passing structure by reference .. 120

C PROGRAMMING UNIONS ..121

How to create union variables? .. 121

Accessing members of a union ... 122

Difference between union and structure .. 122

Narsimha Reddy Engineering College NRCM

More memory is allocated to structures than union .. 123

Only one union member can be accessed at a time ... 124

Passing Union To a Function .. 125

C PROGRAMMING FILES I/O ..125

Why files are needed? .. 125

Types of Files .. 125

1. Text files ... 125

2. Binary files ... 126

File Operations ... 126

Working with files .. 126

Opening a file - for creation and edit ... 126

Closing a File .. 127

Reading and writing to a text file ... 127

Writing to a text file .. 128

Reading from a text file .. 128

Reading and writing to a binary file .. 129

Writing to a binary file ... 129

Reading from a binary file .. 131

Getting data using fseek() .. 132

Syntax of fseek() ... 132

Example of fseek() .. 132

C PROGRAMMING ENUMERATION ..134

Enumerated Type Declaration ... 134

Example: Enumeration Type .. 135

Why enums are used in C programming? ... 135

How to use enums for flags?... 136

Introduction to Data Structures .. 150

Time Complexity of Algorithms .. 152

Introduction to Sorting .. 154

Bubble Sorting ... 155

Narsimha Reddy Engineering College NRCM

Insertion Sorting .. 157

Quick Sort Algorithm .. 160

Merge Sort Algorithm .. 162

Heap Sort Algorithm .. 164

Searching Algorithms on Array ... 168

Stacks ... 170

Queue Data Structures ... 173

Queue Data Structure using Stack... 177

Introduction to Linked Lists .. 179

Linear Linked List ... 180

Circular Linked List .. 185

Implementing Circular Linked List .. 186

Narsimha Reddy Engineering College NRCM

 Introduction to Programming

A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has

to perform depends on what happened when it performed a previous instruction. This section gives an

overview of the two main ways in which you can give these instructions, or “commands” as they are usually

called. One way uses an interpreter, the other a compiler. As human languages are too difficult for a

computer to understand in an unambiguous way, commands are usually written in one or other languages

specially designed for the purpose.

Interpreters

With an interpreter, the language comes as an environment, where you type in commands at a prompt and

the environment executes them for you. For more complicated programs, you can type the commands into a

file and get the interpreter to load the file and execute the commands in it. If anything goes wrong, many

interpreters will drop you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be

corrected readily. The biggest disadvantage comes when you want to share your programs with someone.

They must have the same interpreter, or you must have some way of giving it to them, and they need to

understand how to use it. Also users may not appreciate being thrown into a debugger if they press the

wrong key! From a performance point of view, interpreters can use up a lot of memory, and generally do not

generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before.

This kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also

be argued that the UNIX® shell (sh, csh) is itself an interpreter, and many people do in fact write shell

“scripts” to help with various “housekeeping” tasks on their machine. Indeed, part of the original UNIX®

philosophy was to provide lots of small utility programs that could be linked together in shell scripts to

perform useful tasks.

Interpreters available with FreeBSD

Here is a list of interpreters that are available from the FreeBSD Ports Collection, with a brief discussion of

some of the more popular interpreted languages.

Instructions on how to get and install applications from the Ports Collection can be found in the Ports section

of the handbook.

BASIC

 Short for Beginner's All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching

University students to program and provided with every self-respecting personal computer in the 1980s,

BASIC has been the first programming language for many programmers. It is also the foundation for Visual

Basic. The Bywater Basic Interpreter can be found in the Ports Collection as lang/bwbasic and the Phil

Cockroft's Basic Interpreter (formerly Rabbit Basic) is available as lang/pbasic.

Lisp

Narsimha Reddy Engineering College NRCM

 A language that was developed in the late 1950s as an alternative to the “number-crunching” languages

that were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact, the name is

short for “List Processing”. It is very popular in AI (Artificial Intelligence) circles.

 Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy.

 Various implementations of Lisp that can run on UNIX® systems are available in the Ports Collection

for FreeBSD. GNU Common Lisp can be found as lang/gcl. CLISP by Bruno Haible and Michael Stoll is

available as lang/clisp. For CMUCL, which includes a highly-optimizing compiler too, or simpler Lisp

implementations like SLisp, which implements most of the Common Lisp constructs in a few hundred lines

of C code, lang/cmucl and lang/slisp are available respectively.

Perl

 Very popular with system administrators for writing scripts; also often used on World Wide Web

servers for writing CGI scripts.

 Perl is available in the Ports Collection as lang/perl5.16 for all FreeBSD releases.

Scheme

 A dialect of Lisp that is rather more compact and cleaner than Common Lisp. Popular in Universities as

it is simple enough to teach to undergraduates as a first language, while it has a high enough level of

abstraction to be used in research work.

 Scheme is available from the Ports Collection as lang/elk for the Elk Scheme Interpreter. The MIT

Scheme Interpreter can be found in lang/mit-scheme and the SCM Scheme Interpreter in lang/scm.

Icon

 Icon is a high-level language with extensive facilities for processing strings and structures. The version

of Icon for FreeBSD can be found in the Ports Collection as lang/icon.

Logo

 Logo is a language that is easy to learn, and has been used as an introductory programming language in

various courses. It is an excellent tool to work with when teaching programming to smaller age groups, as it

makes creation of elaborate geometric shapes an easy task.

 The latest version of Logo for FreeBSD is available from the Ports Collection in lang/logo.

Python

 Python is an Object-Oriented, interpreted language. Its advocates argue that it is one of the best

languages to start programming with, since it is relatively easy to start with, but is not limited in comparison

to other popular interpreted languages that are used for the development of large, complex applications (Perl

and Tcl are two other languages that are popular for such tasks).

 The latest version of Python is available from the Ports Collection in lang/python.

Ruby

Narsimha Reddy Engineering College NRCM

 Ruby is an interpreter, pure object-oriented programming language. It has become widely popular

because of its easy to understand syntax, flexibility when writing code, and the ability to easily develop and

maintain large, complex programs.

 Ruby is available from the Ports Collection as lang/ruby18.

Tcl and Tk

 Tcl is an embeddable, interpreted language, that has become widely used and became popular mostly

because of its portability to many platforms. It can be used both for quickly writing small, prototype

applications, or (when combined with Tk, a GUI toolkit) fully-fledged, featureful programs.

 Various versions of Tcl are available as ports for FreeBSD. The latest version, Tcl 8.5, can be found in

lang/tcl85.

 Compilers

Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then

run the compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the

editor; if it did compile and gave you a program, you can run it either at a shell command prompt or in a

debugger to see if it works properly. [1]

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things

which are very difficult or even impossible with an interpreter, such as writing code which interacts closely

with the operating system—or even writing your own operating system! It is also useful if you need to write

very efficient code, as the compiler can take its time and optimize the code, which would not be acceptable

in an interpreter. Moreover, distributing a program written for a compiler is usually more straightforward

than one written for an interpreter—you can just give them a copy of the executable, assuming they have the

same operating system as you.

As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial

compiler makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not

include an IDE in the base system, but devel/kdevelop is available in the Ports Collection and many use

Emacs for this purpose. Using Emacs as an IDE is discussed in Section 2.7, “Using Emacs as a

Development Environment”.

Software:

Organized information in the form of operating systems, utilities, programs, and applications that enable

computers to work.

Software consists of carefully-organized instructions and code written by programmers in any of various

special computer languages. Software is divided commonly into two main categories:

(1) System software: controls the basic (and invisible to the user) functions of a computer and comes

usually preinstalled with the machine. See also BIOS and Operating System.

 (2) Application software: handles multitudes of common and specialized tasks a user wants to perform,

such as accounting, communicating, data processing, word processing.

Narsimha Reddy Engineering College NRCM

Compiler: Translating from source code to machine code executing directly.

Interpreter: Translating from source code to machine code executing it line-by-line.

Assembler: Translating from Assembly language to machine language.

conversation of source to machine code

Narsimha Reddy Engineering College NRCM

Programming Languages

Coded language used by programmers to write instructions that a computer can understand to do what the

programmer (or the computer user) wants.

classification of programming languages:

✓ High level programming language.

✓ Low level programming language.

The first programming language for a computer was Plankalkül, developed by Konrad Zuse for the Z3

between 1943 and 1945. However, it was not implemented until 1998.

Short Code, which was proposed by John Mauchly in 1949, is considered to be the first high-level

programming language.

 It was designed to represent mathematical expressions in a format readable by human beings.

However, because it had to be translated into machine code before it could be executed, it had relatively

slow processing speeds.

Learn C Programming

C is a powerful general-purpose programming language.

It is fast, portable and available in all platforms.

Narsimha Reddy Engineering College NRCM

If you are new to programming, C is a good choice to start your programming journey.

What is C (Programming Language)? - The Basics

✓ Before getting started with C programming, lets get familiarized with the language first.

✓ C is a general-purpose programming language used for wide range of applications from Operating

systems like Windows and iOS to software that is used for creating 3D movies.

✓ C programming is highly efficient. That’s the main reason why it’s very popular despite being more

than 40 years old.

✓ Standard C programs are portable. The source code written in one system works in another operating

system without any change.

✓ As mentioned, it’s a good language to start learning programming. If you know C programming, you

will not just understand how your program works, but will also be able to create a mental picture on

how a computer works.

History of C programming

C is closely associated with Unix Operating system

Development of Unix System

The PDP-11 version of Unix system was written in assembly language. Assembly languages are low-level

programming languages that are specific to a particular computer architecture. They are hard to write and

understand.

The developers of Unix Operating system (including Dennis Ritchie and Stephen C. Johnson) decided to

rewrite the system in B language. However, B couldn’t suffice some of the features of PDP-11, which led to

the development of C.

In 1972, the development of C started on the PDP-11 Unix system. A large part of Unix was then rewritten

in C. By 1973, C was powerful enough to be used in Unix Kernel. Dennis Ritchie and Stephen C. Johnson

made further changes to the language for several years to make it portable in Unix Operating system.

First Book on C Programming

In 1978, the first book of C programming, The C Programming Language, was published. The first edition

of the book provided programmers informal specification of the language. Written by Brian Kernighan and

Dennis Ritchie, this book is popular among C programmers as "K&R".

ANSI C

With the rapid growth of C language for several years, it was time for language to get it standardized.

C89. The first standard of C was published by American National Standards Institute (ANSI) in 1989. This

version is commonly popular as C89.

Narsimha Reddy Engineering College NRCM

C99. In late 1990’s, several new features like inline functions, several new data types and flexible

array-members were added to the C standard. This is commonly known as C99.

C11. The C11 standard has new features like type generic macros, atomic operations, anonymous structures

that doesn’t exist in C99.

All these three standards are also known by the name of ANSI C.

“Standard C programs are portable”. This means, the programs that follow ANSI C standard are portable

among operating systems.

If you are new to programming, it’s advisable to follow the standard (ANSI C in case of C programming)

that is accepted everywhere. It will help you learn the language the way it was intended.

Features of C Programming Language

Why Should you learn C programming?

 If only it were possible to answer this question with a simple “yes” or “no”. Unfortunately, it’s not an

easy question to answer and varies from person to person.

Personally speaking, I love C programming. It is a good language to start your programming journey if you

are a newbie. Even if you are an experienced programmer, I recommend you to learn it at some point; it will

certainly help.

What will you gain if you learn C?

If you don’t know C, you don’t know what you are doing as a programmer. Sure, your application works

fine and all. But, if you can’t say why while (*s++ = *p++); copies a string, you’re programming on a

superstition. (Joel Spolsky’s words, not mine).

 You will understand how a computer works.

 If you know C, you will not only know how your program works but, you will be able to create a

mental model on how a computer works (including memory management and allocation). You will learn to

appreciate the freedom that C provides unlike Python and Java.

 Understanding C allows you to write programs that you never thought were possible before (or at the

very least, you will have a broader understanding of computer architecture and programming as a whole).

 C is the lingua franca of programming.

 Almost all high-level programming languages like Java, Python, JavaScript etc. can interface with C

programming. Also, it’s a good language to express common ideas in programming. Doesn’t matter if the

person you are talking with doesn’t know C, you can still convey your idea in a way they can understand.

 Opportunity to work on open source projects that impact millions of people.

 At first, you may overlook the fact that C is an important language. If you need to develop a mobile app,

you need Java (for Android), Swift and Objective C (for iOS). And there are dozens of languages like C#,

PHP, ASP.net, Ruby, Python for building web application. Then, where is C programming?

Narsimha Reddy Engineering College NRCM

 Python is used for making wide range for applications. And, C is used for making Python. If you want

to contribute to Python, you need to know C programming to work on Python interpreter that impacts

millions of Python programmers. This is just one example. A large number of softwares that you use today

is powered by C.

 Some of the larger open source projects where C programming is used are Linux Kernel, Python

Interpreter, SQLite Database.

 Another language that’s commonly used for large open source project is C++. If you know C and C++,

you can contribute to large open source projects that impacts hundreds of millions of people.

 You will write better programs.

 To be honest, this statement may not be true all the time. However, knowing how computer works and

manage memory gives you insight on how to write efficient code in other programming languages.

 You will find it much easier to learn other programming languages.

 A lot of popular programming languages are based on C (and C++, considered superset of C

programming with OOP features). If you know C, you will get a head start learning C++.

 Languages like C# and Java are related to C and C++. Also, the syntax of JavaScript and PHP is similar

to C.

 If you know C and C++ programming, you will not have any problem switching to another language.

Reasons not to learn C programming

You can create awesome softwares without knowing C programming at all. Jeff Atwood, one of the creators

of Stackoverflow.com, apparently doesn’t know C and Stack Overflow is a really good web application.

If you are busy and don’t want to invest time on something that doesn’t have direct effect on your

day-to-day work, C programming is not for you.

Also, if you are a newbie and want to start learning programming with an easier language (C is not the

easiest of language to learn), you can start with Python.

Verdict on whether to learn C programming or not

For newbie:

For many, C programming is the best language to start learning programming. However, if you want to start

with an easier language which is clean and easier to grasp, go for Python.

For experienced programmers:

It’s not absolutely essential but there are perks of learning C programming.

Don’t leave your current project immediately (I know you won’t) to learn C. You can learn it when you have

free time and want to expand your programming skills.

I believe, it’s not necessary to learn C immediately. However, you should learn C eventually.

Narsimha Reddy Engineering College NRCM

Compile and run C programming on your OS

There are numerous compilers and text editors you can use to run C programming. These compilers and text

editors may differ from system to system.You will find the easiest way to run C programming on your

computer (Windows, Mac OS X or Linux) in this section.

Run C Programming in Windows (XP, 7, 8 and 10)

To run C Programming in Windows, download a software called Code::Blocks. Then, write C code, save the

file with .c extension and execute the code.

To make this procedure even easier, follow this step by step guide.

 Go to the binary release download page of Code:Blocks official site.

 Under Windows XP / Vista / 7 / 8.x / 10 section, click the link with mingw-setup (highlighted row)

either from Sourceforge.net or FossHub.

 Download Code::Blocks in Windows

 Open the Code::Blocks Setup file and follow the instructions (Next > I agree > Next > Install); you

don’t need to change anything. This installs the Code::Blocks with gnu gcc compiler, which is the best

compiler to start with for beginners.

 Now, open Code::Blocks and go to File > New > Empty file (Shortcut: Ctrl + Shift + N)

 Create empty file in Codeblocks

 Write the C code and save the file with .c extension. To save the file, go to File > Save (Shortcut: Ctrl + S).

 Important: The filename should end with a .c extension, like: hello.c, your-program-name.c

 Create file with .c extension in Codeblocks to run C programming

 To run the program, go to Build > Build and Run (Shortcut: F9). This will build the executable file and

run it.

If your program doesn’t run and if you see error message "can't find compiler executable in your search

path(GNU GCC compiler)", go to Settings > Compiler > Toolchain executables and click Auto-detect. This

should solve the issue in most cases.

The fun begins: Your first C program

You will learn to write a “Hello, World!” program in this section.

Why “Hello, World!” program?

“Hello, World!” is a simple program that displays “Hello, World!” on the screen. Since, it’s a very simple

program, it is used to illustrate the basic syntax of any programming language.

This program is often used to introduce programming language to a beginner. So, let’s get started.

#include <stdio.h>

Narsimha Reddy Engineering College NRCM

int main()

{

 printf("Hello, World!\n");

 return 0;

}

How “Hello, World!” program works?

Include stdio.h header file in your program.

C programming is small and cannot do much by itself. You need to use libraries that are necessary to run the

program. The stdio.h is a header file and C compiler knows the location of that file. To use the file, you need

to include it in your program using #include preprocessor.

Why do you need stdio.h file in this program?

In this program, we have used printf() function which displays the text inside the quotation mark. Since

printf() is defined in stdio.h, you need to include stdio.h.

The main() function

In C programming, the code execution begins from the start of main() function (doesn’t matter if main()

isn’t located at the beginning).

The code inside the curly braces { } is the body of main() function. The main() function is mandatory in

every C program.

int main() {

}

This program doesn’t do anything but, it’s a valid C program.

The printf() function

The printf() is a library function that sends formatted output to the screen (displays the string inside the

quotation mark). Notice the semicolon at the end of the statement.

In our program, it displays Hello, World! on the screen.

Remember, you need to include stdio.h file in your program for this to work.

Narsimha Reddy Engineering College NRCM

The return statement

The return statement return 0; inside the main() function ends the program. This statement isn’t mandatory.

However, it’s considered good programming practice to use it.

Key notes to take away

✓ All C program starts from the main() function and it’s mandatory.

✓ You can use the required header file that’s necessary in the program.

✓ For example: To use sqrt() function to calculate square root and pow() function to find power of a

number, you need to include math.h header file in your program.

✓ C is case-sensitive; the use of uppercase letter and lowercase letter have different meanings.

✓ The C program ends when the program encounters the return statement inside the main() function.

However, return statement inside the main function is not mandatory.

✓ The statement in a C program ends with a semicolon.

Always follow good programming practice

✓ Good programming practice are the informal rules which can improve quality and decrease

development time of the software.

✓ Some of the programming practices mentioned here are valid in all programming languages whereas

some are valid only for C programming.

✓ Be consistent with the formatting.

✓ The number of spaces you use in the program doesn’t matter in C. However, that doesn’t mean you

should use different number of spaces at different places. Also, use proper indentation so that the code is

easier to understand.

✓ Use one statement per line.

What’s wrong with the following code?

int count;

float squareRoot = 10.0;

printf(“Square root = %f”, squareRoot);

Actually, the code is perfectly valid. But, wouldn’t this be better:

int count;

float squareRoot = 10.0;

printf(“Square root = %f”, squareRoot);

The goal here is to write code that your fellow programmers can understand.

Naming convention and Consistency!

Narsimha Reddy Engineering College NRCM

Give a proper name to variables and functions and be consistent with it.

int a, b;

Here, a and b are two variables and I have no idea what they do. Instead you can choose name like:

int counter, power;

Also, follow a convention while naming. For example:

int base_number, powerNumber;

Both conventions: using _ to separate words and using capital letter after first word is popular. However,

don’t use both in one program; choose one and be consistent with it.

Start Habit of Using Comments

Comments are part of code that compiler ignores.

You can use comments in your program to explain what you are trying to achieve in your program. This

helps your fellow programmer to understand the code.

You can use comments in C programming by using //. For example:

// My first C program

#include <stdio.h>

int main()

{

 printf("Hello, World!\n"); // displays Hello, World! on the screen

 return 0;

}

 “Commenting your code is like cleaning your bathroom - you never want to do it, but it really does

create a more pleasant experience for you and your guests.”

 — Ryan Campbell

C Programming Keywords and Identifiers

Reserved words in C programming that are part of the syntax. Also, you will learn about identifiers and

proper way to name a variable.

Character set

Narsimha Reddy Engineering College NRCM

Character set is a set of alphabets, letters and some special characters that are valid in C language.

Alphabets

Uppercase: A B C X Y Z

Lowercase: a b c x y z

C accepts both lowercase and uppercase alphabets as variables and functions.

Digits

0 1 2 3 4 5 6 7 8 9

Special Characters

Special Characters in C Programming

, < > . _

() ; $:

% [] # ?

' & { } "

^ ! * / |

- \ ~ +

White space Characters

blank space, new line, horizontal tab, carriage return and form feed

C Keywords

Keywords are predefined, reserved words used in programming that have special meanings to the compiler.

Keywords are part of the syntax and they cannot be used as an identifier. For example:

int money;

Here, int is a keyword that indicates 'money' is a variable of type integer.

As C is a case sensitive language, all keywords must be written in lowercase. Here is a list of all keywords

allowed in ANSI C.

Keywords in C Language

Narsimha Reddy Engineering College NRCM

auto double Int struct

break else Long switch

case enum register typedef

char extern Return union

continue for Signed void

do if static while

default goto Sizeof volatile

const float short unsigned

Along with these keywords, C supports other numerous keywords depending upon the compiler..

C Identifiers

Identifier refers to name given to entities such as variables, functions, structures etc.

Identifier must be unique. They are created to give unique name to a entity to identify it during the execution

of the program. For example:

int money;

double accountBalance;

Here, money and accountBalance are identifiers.

Also remember, identifier names must be different from keywords. You cannot use int as an identifier

because int is a keyword.

Rules for writing an identifier

1. A valid identifier can have letters (both uppercase and lowercase letters), digits and underscores.

2. The first letter of an identifier should be either a letter or an underscore. However, it is discouraged

to start an identifier name with an underscore.

3. There is no rule on length of an identifier. However, the first 31 characters of identifiers

are discriminated by the compiler.

Variables

In programming, a variable is a container (storage area) to hold data.

Narsimha Reddy Engineering College NRCM

To indicate the storage area, each variable should be given a unique name (identifier). Variable names are

just the symbolic representation of a memory location. For example:

int playerScore = 95;

Here, playerScore is a variable of integer type. The variable is assigned value: 95.

The value of a variable can be changed, hence the name 'variable'.

In C programming, you have to declare a variable before you can use it.

Rules for naming a variable in C

1. A variable name can have letters (both uppercase and lowercase letters), digits and underscore only.

2. The first letter of a variable should be either a letter or an underscore. However, it is discouraged to

start variable name with an underscore. It is because variable name that starts with an underscore can

conflict with system name and may cause error.

3. There is no rule on how long a variable can be. However, only the first 31 characters of a variable are

checked by the compiler. So, the first 31 letters of two variables in a program should be different.

C is a strongly typed language. What this means it that, the type of a variable cannot be changed.

Constants/Literals: A constant is a value or an identifier whose value cannot be altered in a program. For

example: 1, 2.5, "C programming is easy", etc.

As mentioned, an identifier also can be defined as a constant.

const double PI = 3.14

Here, PI is a constant. Basically what it means is that, PI and 3.14 is same for this program.

Below are the different types of constants you can use in C.

1. Integer constants

An integer constant is a numeric constant (associated with number) without any fractional or exponential

part. There are three types of integer constants in C programming:

• decimal constant(base 10)

• octal constant(base 8)

• hexadecimal constant(base 16)

For example:

Decimal constants: 0, -9, 22 etc

Octal constants: 021, 077, 033 etc

Hexadecimal constants: 0x7f, 0x2a, 0x521 etc

In C programming, octal constant starts with a 0 and hexadecimal constant starts with a 0x.

Narsimha Reddy Engineering College NRCM

2. Floating-point constants

A floating point constant is a numeric constant that has either a fractional form or an exponent form. For

example:

-2.0

0.0000234

-0.22E-5

3. Character constants

A character constant is a constant which uses single quotation around characters. For example: 'a', 'l', 'm', 'F'

4. Escape Sequences

Sometimes, it is necessary to use characters which cannot be typed or has special meaning in C

programming. For example: newline(enter), tab, question mark etc. In order to use these characters, escape

sequence is used.

For example: \n is used for newline. The backslash (\) causes "escape" from the normal way the characters

are interpreted by the compiler.

Escape Sequences

Escape Sequences Character

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\? Question mark

Narsimha Reddy Engineering College NRCM

Escape Sequences

Escape Sequences Character

\0 Null character

5. String constants

String constants are the constants which are enclosed in a pair of double-quote marks. For example:

"good" //string constant

"" //null string constant

"" //string constant of six white space

"x" //string constant having single character.

"Earth is round\n" //prints string with newline.

6. Enumeration constants

Keyword enum is used to define enumeration types. For example:

enum color {yellow, green, black, white};

Here, color is a variable and yellow, green, black and white are the enumeration constants having value 0, 1,

2 and 3 respectively.

C Programming Data Types

In C programming, variables or memory locations should be declared before it can be used. Similarly, a

function also needs to be declared before use.

Data types simply refers to the type and size of data associated with variables and functions.

Data types in C

Fundamental Data Types

✓ Integer types

✓ Floating type

✓ Character type

Derived Data Types

✓ Arrays

✓ Pointers

Narsimha Reddy Engineering College NRCM

✓ Structures

✓ Enumeration

Int - Integer data types

Integers are whole numbers that can have both positive and negative values but no decimal values. Example:

0, -5, 10

In C programming, keyword int is used for declaring integer variable. For example:

int id;

Here, id is a variable of type integer.

You can declare multiple variable at once in C programming. For example:

int id, age;

The size of int is either 2 bytes(In older PC's) or 4 bytes. If you consider an integer having size of 4

byte(equal to 32 bits), it can take 232 distinct states as: -231,-231+1, ...,-2, -1, 0, 1, 2, ..., 231-2, 231-1

Similarly, int of 2 bytes, it can take 216 distinct states from -215 to 215-1. If you try to store larger number

than 231-1, i.e,+2147483647 and smaller number than -231, i.e, -2147483648, program will not run

correctly.

float - Floating types

Floating type variables can hold real numbers such as: 2.34, -9.382, 5.0 etc. You can declare a floating point

variable in C by using either float or double keyword. For example:

float accountBalance;

double bookPrice;

Here, both accountBalance and bookPrice are floating type variables.

In C, floating values can be represented in exponential form as well. For example:

float normalizationFactor = 22.442e2;

Difference between float and double

The size of float (single precision float data type) is 4 bytes. And the size of double (double precision float

data type) is 8 bytes. Floating point variables has a precision of 6 digits whereas the precision of double is

14 digits.

char - Character types

Keyword char is used for declaring character type variables. For example:

Narsimha Reddy Engineering College NRCM

char test = 'h';

Here, test is a character variable. The value of test is 'h'.

The size of character variable is 1 byte.

C Qualifiers

Qualifiers alters the meaning of base data types to yield a new data type.

Size qualifiers

Size qualifiers alters the size of a basic type. There are two size qualifiers, long and short. For example:

long double i;

The size of double is 8 bytes. However, when long keyword is used, that variable becomes 10 bytes.

Learn more about long keyword in C programming.

There is another keyword short which can be used if you previously know the value of a variable will

always be a small number.

Sign qualifiers

Integers and floating point variables can hold both negative and positive values. However, if a variable

needs to hold positive value only, unsigned data types are used. For example:

// unsigned variables cannot hold negative value

unsigned int positiveInteger;

There is another qualifier signed which can hold both negative and positive only. However, it is not

necessary to define variable signed since a variable is signed by default.

An integer variable of 4 bytes can hold data from -231 to 231-1. However, if the variable is defined as

unsigned, it can hold data from 0 to 232-1.

It is important to note that, sign qualifiers can be applied to int and char types only.

Constant qualifiers

An identifier can be declared as a constant. To do so const keyword is used.

const int cost = 20;

The value of cost cannot be changed in the program.

Volatile qualifiers

A variable should be declared volatile whenever its value can be changed by some external sources outside

the program. Keyword volatile is used for creating volatile variables.

Narsimha Reddy Engineering College NRCM

C Programming Input Output (I/O): printf() and scanf()

C programming has several in-built library functions to perform input and output tasks.

Two commonly used functions for I/O (Input/Output) are printf() and scanf().

The scanf() function reads formatted input from standard input (keyboard) whereas the printf() function

sends formatted output to the standard output (screen).

Example #1: C Output

#include <stdio.h> //This is needed to run printf() function.int main(){

 printf("C Programming"); //displays the content inside quotation

 return 0;}

Output:C Programming

How this program works?

• All valid C program must contain the main() function. The code execution begins from the start of

main() function.

• The printf() is a library function to send formatted output to the screen. The printf() function is

declared in "stdio.h" header file.

• Here, stdio.h is a header file (standard input output header file) and #include is a preprocessor

directive to paste the code from the header file when necessary. When the compiler encounters

printf() function and doesn't find stdio.h header file, compiler shows error.

• The return 0; statement is the "Exit status" of the program. In simple terms, program ends.

Example #2: C Integer Output

#include <stdio.h>int main(){

 int testInteger = 5;

 printf("Number = %d", testInteger);

 return 0;}

Output

Number = 5

Inside the quotation of printf() function, there is a format string "%d" (for integer). If the format string

matches the argument (testInteger in this case), it is displayed on the screen.

Example #3: C Integer Input/Output

#include <stdio.h>int main(){

 int testInteger;

 printf("Enter an integer: ");

 scanf("%d",&testInteger);

 printf("Number = %d",testInteger);

 return 0;}

Output

Enter an integer: 4

https://www.programiz.com/c-programming/library-function

Narsimha Reddy Engineering College NRCM

Number = 4

The scanf() function reads formatted input from the keyboard. When user enters an integer, it is stored in

variable testInteger.

Note the '&' sign before testInteger; &testInteger gets the address of testInteger and the value is stored in

that address.

Example #3: C Floats Input/Output

#include <stdio.h>int main(){

 float f;

 printf("Enter a number: ");// %f format string is used in case of floats

 scanf("%f",&f);

 printf("Value = %f", f);

 return 0;}

Output

Enter a number: 23.45

Value = 23.450000

The format string "%f" is used to read and display formatted in case of floats.

Example #4: C Character I/O

#include <stdio.h>int main(){

 char chr;

 printf("Enter a character: ");

 scanf("%c",&chr);

 printf("You entered %c.",chr);

 return 0;}

Output

Enter a character: g

You entered g.

Format string %c is used in case of character types.

Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored. Instead, a numeric

value(ASCII value) is stored.

And when we displayed that value using "%c" text format, the entered character is displayed.

Example #5: C ASCII Code

#include <stdio.h>int main(){

 char chr;

 printf("Enter a character: ");

Narsimha Reddy Engineering College NRCM

 scanf("%c",&chr);

 // When %c text format is used, character is displayed in case of character types

 printf("You entered %c.\n",chr);

 // When %d text format is used, integer is displayed in case of character types

 printf("ASCII value of %c is %d.", chr, chr);

 return 0;}

Output

Enter a character: g

You entered g.

ASCII value of g is 103.

The ASCII value of character 'g' is 103. When, 'g' is entered, 103 is stored in variable var1 instead of g.

You can display a character if you know ASCII code of that character. This is shown by following example.

Example #6: C ASCII Code

#include <stdio.h>int main(){

 int chr = 69;

 printf("Character having ASCII value 69 is %c.",chr);

 return 0;}

Output

Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and floats can be displayed in different formats in C programming.

Example #7: I/O of Floats and Integers

#include <stdio.h>int main(){

 int integer = 9876;

 float decimal = 987.6543;

 // Prints the number right justified within 6 columns

 printf("4 digit integer right justified to 6 column: %6d\n", integer);

 // Tries to print number right justified to 3 digits but the number is not right adjusted because there are

only 4 numbers

 printf("4 digit integer right justified to 3 column: %3d\n", integer);

Narsimha Reddy Engineering College NRCM

 // Rounds to two digit places

 printf("Floating point number rounded to 2 digits: %.2f\n",decimal);

 // Rounds to 0 digit places

 printf("Floating point number rounded to 0 digits: %.f\n",987.6543);

 // Prints the number in exponential notation(scientific notation)

 printf("Floating point number in exponential form: %e\n",987.6543);

 return 0;}

Output

4 digit integer right justified to 6 column: 9876

4 digit integer right justified to 3 column: 9876

Floating point number rounded to 2 digits: 987.65

Floating point number rounded to 0 digits: 988

Floating point number in exponential form: 9.876543e+02

C Programming Input Output (I/O): printf() and scanf()

There are two in-built functions printf() and scanf() to perform I/O task in C programming. Also, you will

learn to write a valid program in C.

C programming has several in-built library functions to perform input and output tasks.

Two commonly used functions for I/O (Input/Output) are printf() and scanf().

The scanf() function reads formatted input from standard input (keyboard) whereas the printf() function

sends formatted output to the standard output (screen).

Example #1: C Output

#include <stdio.h> //This is needed to run printf() function.int main(){

 printf("C Programming"); //displays the content inside quotation

 return 0;}

Output

C Programming

How this program works?

• All valid C program must contain the main() function. The code execution begins from the start of

main() function.

• The printf() is a library function to send formatted output to the screen. The printf() function is

declared in "stdio.h" header file.

• Here, stdio.h is a header file (standard input output header file) and #include is a preprocessor

directive to paste the code from the header file when necessary. When the compiler encounters

printf() function and doesn't find stdio.h header file, compiler shows error.

• The return 0; statement is the "Exit status" of the program. In simple terms, program ends.

https://www.programiz.com/c-programming/library-function

Narsimha Reddy Engineering College NRCM

Example #2: C Integer Output

#include <stdio.h>int main(){

 int testInteger = 5;

 printf("Number = %d", testInteger);

 return 0;}

Output

Number = 5

Inside the quotation of printf() function, there is a format string "%d" (for integer). If the format string

matches the argument (testInteger in this case), it is displayed on the screen.

Example #3: C Integer Input/Output

#include <stdio.h>int main(){

 int testInteger;

 printf("Enter an integer: ");

 scanf("%d",&testInteger);

 printf("Number = %d",testInteger);

 return 0;}

Output

Enter an integer: 4

Number = 4

The scanf() function reads formatted input from the keyboard. When user enters an integer, it is stored in

variable testInteger.

Note the '&' sign before testInteger; &testInteger gets the address of testInteger and the value is stored in

that address.

Example #3: C Floats Input/Output

#include <stdio.h>int main(){

 float f;

 printf("Enter a number: ");// %f format string is used in case of floats

 scanf("%f",&f);

 printf("Value = %f", f);

 return 0;}

Output

Enter a number: 23.45

Value = 23.450000

The format string "%f" is used to read and display formatted in case of floats.

Example #4: C Character I/O

#include <stdio.h>int main(){

 char chr;

Narsimha Reddy Engineering College NRCM

 printf("Enter a character: ");

 scanf("%c",&chr);

 printf("You entered %c.",chr);

 return 0;}

Output

Enter a character: g

You entered g.

Format string %c is used in case of character types.

Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored. Instead, a numeric

value(ASCII value) is stored.

And when we displayed that value using "%c" text format, the entered character is displayed.

Example #5: C ASCII Code

#include <stdio.h>int main(){

 char chr;

 printf("Enter a character: ");

 scanf("%c",&chr);

 // When %c text format is used, character is displayed in case of character types

 printf("You entered %c.\n",chr);

 // When %d text format is used, integer is displayed in case of character types

 printf("ASCII value of %c is %d.", chr, chr);

 return 0;}

Output

Enter a character: g

You entered g.

ASCII value of g is 103.

The ASCII value of character 'g' is 103. When, 'g' is entered, 103 is stored in variable var1 instead of g.

You can display a character if you know ASCII code of that character. This is shown by following example.

Example #6: C ASCII Code

#include <stdio.h>int main(){

 int chr = 69;

 printf("Character having ASCII value 69 is %c.",chr);

 return 0;}

Output

Narsimha Reddy Engineering College NRCM

Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and floats can be displayed in different formats in C programming.

Example #7: I/O of Floats and Integers

#include <stdio.h>int main(){

 int integer = 9876;

 float decimal = 987.6543;

 // Prints the number right justified within 6 columns

 printf("4 digit integer right justified to 6 column: %6d\n", integer);

 // Tries to print number right justified to 3 digits but the number is not right adjusted because there are

only 4 numbers

 printf("4 digit integer right justified to 3 column: %3d\n", integer);

 // Rounds to two digit places

 printf("Floating point number rounded to 2 digits: %.2f\n",decimal);

 // Rounds to 0 digit places

 printf("Floating point number rounded to 0 digits: %.f\n",987.6543);

 // Prints the number in exponential notation(scientific notation)

 printf("Floating point number in exponential form: %e\n",987.6543);

 return 0;}

Output

4 digit integer right justified to 6 column: 9876

4 digit integer right justified to 3 column: 9876

Floating point number rounded to 2 digits: 987.65

Floating point number rounded to 0 digits: 988

Floating point number in exponential form: 9.876543e+02

C Preprocessor and Macros

In this article, you will be introduced to c preprocessors and you will learn to use #include, #define and

conditional compilation.

Narsimha Reddy Engineering College NRCM

The C preprocessor is a macro preprocessor (allows you to define macros) that transforms your program

before it is compiled. These transformations can be inclusion of header file, macro聽 expansions etc.

All preprocessing directives begins with a # symbol. For example,

#define PI 3.14

Some of the common uses of C preprocessor are:

Include header files

Macros

Conditional Compilation

Diagnostics

Line Control

Pragmas

Other Directives

Preprocessor Output

Including Header Files

The #include preprocessor is used to include header files to a C program. For example,

#include <stdio.h>

Here, "stdio.h" is a header file. The #include preprocessor directive replaces the above line with the contents

of stdio.h header file which contains function and macro definitions.

That's the reason why you need to use #include <stdio.h> before you can use functions like scanf() and

printf().

You can also create your own header file containing function declaration and include it in your program

using this preprocessor directive.

#include "my_header.h"

Macros using #define

You can define a macro in C using #define preprocessor directive.

A macro is a fragment of code that is given a name. You can use that fragment of code in your program by

using the name. For example,

#define c 299792458 // speed of light

Here, when we use c in our program, it's replaced by 3.1415.

Example 1: Using #define preprocessor

https://www.programiz.com/c-programming/c-preprocessor-macros#header-files
https://www.programiz.com/c-programming/c-preprocessor-macros#macros
https://www.programiz.com/c-programming/c-preprocessor-macros#conditional
https://gcc.gnu.org/onlinedocs/cpp/Diagnostics.html#Diagnostics
https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html#Pragmas
https://gcc.gnu.org/onlinedocs/cpp/Other-Directives.html#Other-Directives
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html#Preprocessor-Output

Narsimha Reddy Engineering College NRCM

#include <stdio.h>#define PI 3.1415

int main(){

 float radius, area;

 printf("Enter the radius: ");

 scanf("%d", &radius);

 // Notice, the use of PI

 area = PI*radius*radius;

 printf("Area=%.2f",area);

 return 0;}

You can also define macros that works like a function call, known as function-like macros. For example,

#define circleArea(r) (3.1415*r*r)

Every time the program encounters circleArea(argument), it is replaced by

(3.1415*(argument)*(argument)).

Suppose, we passed 5 as an argument then, it expands as below:

circleArea(5) expands to (3.1415*5*5)

Example 2: Using #define preprocessor

#include <stdio.h>#define PI 3.1415#define circleArea(r) (PI*r*r)

int main()

{

 int radius;

 float area;

 printf("Enter the radius: ");

 scanf("%d", &radius);

 area = circleArea(radius);

 printf("Area = %.2f", area);

return 0;

Narsimha Reddy Engineering College NRCM

}

Conditional Compilation

In C programming, you can instruct preprocessor whether to include certain chuck of code or not. To do so,

conditional directives can be used.

It's similar like a if statement. However, there is a big difference you need to understand.

The if statement is tested during the execution time to check whether a block of code should be executed or

not whereas, the conditionals is used to include (or skip) certain chucks of code in your program before

execution.

Uses of Conditional

• use different code depending on the machine, operating system

• compile same source file in two different programs

• to exclude certain code from the program but to keep it as reference for future purpose

How to use conditional?

To use conditional, #ifdef, #if, #defined, #else and #elseif directives are used.

#ifdef Directive

#ifdef MACRO

 conditional codes

#endif

Here, the conditional codes are included in the program only if MACRO is defined.

#if, #elif and #else Directive

#if expression

 conditional codes

#endif

Narsimha Reddy Engineering College NRCM

Here, expression is a expression of integer type (can be integers, characters, arithmetic expression, macros

and so on). The conditional codes are included in the program only if the expression is evaluated to a

non-zero value.

The optional #else directive can used with #if directive.

#if expression

 conditional codes if expression is non-zero

#else

 conditional if expression is 0

#endif

You can also add nested conditional to your #if...#else using #elif

#if expression

 conditional codes if expression is non-zero

#elif expression1

 conditional codes if expression is non-zero

#elif expression2

 conditional codes if expression is non-zero

...

else

 conditional if all expressions are 0

#endif

#defined

The special operator #defined is used to test whether certain macro is defined or not. It's often used with #if

directive.

#if defined BUFFER_SIZE && BUFFER_SIZE >= 2048

 conditional codes

Predefined Macros

There are some predefined macros which are readily for use in C programming.

Narsimha Reddy Engineering College NRCM

Predefined macro Value

__DATE__ String containing the current date

__FILE__ String containing the file name

__LINE__ Integer representing the current line number

__STDC__ If follows ANSI standard C, then value is a nonzero integer

__TIME__ String containing the current date.

Example #3: predefined Macros

C Program to find the current time

#include <stdio.h>int main(){

 printf("Current time: %s",__TIME__); //calculate the current time}

Output

Current time: 19:54:39

C Standard Library Functions

In this article, you'll learn about the standard library functions in C. More specifically, what are they,

different library functions in C and how to use them in your program.

C Standard library functions or simply C Library functions are inbuilt functions in C programming.

The prototype and data definitions of the functions are present in their respective header files, and must be

included in your program to access them.

For example: If you want to use printf() function, the header file <stdio.h> should be included.

#include <stdio.h>int main(){

 // If you use printf() function without including the <stdio.h>

 // header file, this program will show an error.

 printf("Catch me if you can."); }

https://www.programiz.com/c-programming/c-functions

Narsimha Reddy Engineering College NRCM

There is at least one function in any C program, i.e., the main() function (which is also a library function).

This function is automatically called when your program starts.

Advantages of using C library functions

There are many library functions available in C programming to help you write a good and efficient program.

But, why should you use it?

Below are the 4 most important advantages of using standary library functions.

1. They work

One of the most important reasons you should use library functions is simply because they work.

These functions have gone through multiple rigorous testing and are easy to use.

2. The functions are optimized for performance

Since, the functions are "standard library" functions, a dedicated group of developers constantly make them

better.

In the process, they are able to create the most efficient code optimized for maximum performance.

3. It saves considerable development time

Since the general functions like printing to a screen, calculating the square root, and many more are already

written. You shouldn't worry about creating them once again.

It saves valuable time and your code may not always be the most efficient.

3. The functions are portable

With ever changing real world needs, your application is expected to work every time, everywhere.

And, these library functions help you in that they do the same thing on every computer.

This saves time, effort and makes your program portable.

Use Of Library Function To Find Square root

However, in C programming you can find the square root by just using sqrt() function which is defined

under header file "math.h"

#include <stdio.h>#include <math.h>int main(){

 float num, root;

 printf("Enter a number:);

Narsimha Reddy Engineering College NRCM

 scanf("%f", &num);

 // Computes the square root of num and stores in root.

 root = sqrt(num);

 printf("Square root of %.2f = %.2f", num, root);

 return 0;}

When you run the program, the output will be:

Enter a number: 12

Square root of 12.00 = 3.46

C Library Functions Under Different Header File

C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

Narsimha Reddy Engineering College NRCM

Operators:

C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction and multiplication on

numerical values (constants and variables).

Operator Meaning of Operator

+ addition or unary plus

- subtraction or unary minus

* multiplication

/ division

% remainder after division(modulo division)

Example #1: Arithmetic Operators

// C Program to demonstrate the working of arithmetic operators#include <stdio.h>int main(){

 int a = 9,b = 4, c;

 c = a+b;

 printf("a+b = %d \n",c);

 c = a-b;

 printf("a-b = %d \n",c);

 c = a*b;

 printf("a*b = %d \n",c);

Narsimha Reddy Engineering College NRCM

 c=a/b;

 printf("a/b = %d \n",c);

 c=a%b;

 printf("Remainder when a divided by b = %d \n",c);

 return 0;}

Output

a+b = 13

a-b = 5

a*b = 36

a/b = 2

Remainder when a divided by b=1

The operators +, - and * computes addition, subtraction and multiplication respectively as you might have

expected.

In normal calculation, 9/4 = 2.25. However, the output is 2 in the program.

It is because both variables a and b are integers. Hence, the output is also an integer. The compiler neglects

the term after decimal point and shows answer 2 instead of 2.25.

The modulo operator % computes the remainder. When a = 9 is divided by b = 4, the remainder is 1. The %

operator can only be used with integers.

Suppose a = 5.0, b = 2.0, c = 5 and d = 2. Then in C programming,

a/b = 2.5 // Because both operands are floating-point variables

a/d = 2.5 // Because one operand is floating-point variable

c/b = 2.5 // Because one operand is floating-point variable

c/d = 2 // Because both operands are integers

Increment and decrement operators

C programming has two operators increment ++ and decrement -- to change the value of an operand

(constant or variable) by 1.

Narsimha Reddy Engineering College NRCM

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These two operators

are unary operators, meaning they only operate on a single operand.

Example #2: Increment and Decrement Operators

// C Program to demonstrate the working of increment and decrement operators#include <stdio.h>int

main(){

 int a = 10, b = 100;

 float c = 10.5, d = 100.5;

 printf("++a = %d \n", ++a);

 printf("--b = %d \n", --b);

 printf("++c = %f \n", ++c);

 printf("--d = %f \n", --d);

 return 0;}

Output

++a = 11

--b = 99

++c = 11.500000

++d = 99.500000

Here, the operators ++ and -- are used as prefix. These two operators can also be used as postfix like a++

and a--. Visit this page to learn more on how increment and decrement operators work when used as postfix.

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common assignment operator is

=

Narsimha Reddy Engineering College NRCM

Operator
Exampl

e
Same as

= a = b a = b

+= a += b a = a+b

-= a -= b a = a-b

*= a *= b a = a*b

/= a /= b a = a/b

%= a %= b a = a%b

Example #3: Assignment Operators

// C Program to demonstrate the working of assignment operators#include <stdio.h>int main(){

 int a = 5, c;

 c = a;

 printf("c = %d \n", c);

 c += a; // c = c+a

 printf("c = %d \n", c);

 c -= a; // c = c-a

 printf("c = %d \n", c);

 c *= a; // c = c*a

 printf("c = %d \n", c);

 c /= a; // c = c/a

 printf("c = %d \n", c);

Narsimha Reddy Engineering College NRCM

 c %= a; // c = c%a

 printf("c = %d \n", c);

 return 0;}

Output

c = 5

c = 10

c = 5

c = 25

c = 5

c = 0

C Relational Operators

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the

relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 returns 0

> Greater than 5 > 3 returns 1

< Less than 5 < 3 returns 0

!= Not equal to 5 != 3 returns 1

>= Greater than or equal to 5 >= 3 returns 1

<= Less than or equal to 5 <= 3 return 0

Example #4: Relational Operators

// C Program to demonstrate the working of arithmetic operators#include <stdio.h>int main(){

 int a = 5, b = 5, c = 10;

 printf("%d == %d = %d \n", a, b, a == b); // true

 printf("%d == %d = %d \n", a, c, a == c); // false

 printf("%d > %d = %d \n", a, b, a > b); //false

 printf("%d > %d = %d \n", a, c, a > c); //false

Narsimha Reddy Engineering College NRCM

 printf("%d < %d = %d \n", a, b, a < b); //false

 printf("%d < %d = %d \n", a, c, a < c); //true

 printf("%d != %d = %d \n", a, b, a != b); //false

 printf("%d != %d = %d \n", a, c, a != c); //true

 printf("%d >= %d = %d \n", a, b, a >= b); //true

 printf("%d >= %d = %d \n", a, c, a >= c); //false

 printf("%d <= %d = %d \n", a, b, a <= b); //true

 printf("%d <= %d = %d \n", a, c, a <= c); //true

return 0;}

Output

5 == 5 = 1

5 == 10 = 0

5 > 5 = 0

5 > 10 = 0

5 < 5 = 0

5 < 10 = 1

5 != 5 = 0

5 != 10 = 1

5 >= 5 = 1

5 >= 10 = 0

5 <= 5 = 1

5 <= 10 = 1

C Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression results

true or false. Logical operators are commonly used in decision making in C programming.

Operator Meaning of Operator Example

&&
Logial AND. True only if all

operands are true.

If c = 5 and d = 2 then, expression ((c ==

5) && (d > 5)) equals to 0.

||
Logical OR. True only if

either one operand is true

If c = 5 and d = 2 then, expression ((c ==

5) || (d > 5)) equals to 1.

Narsimha Reddy Engineering College NRCM

Operator Meaning of Operator Example

!
Logical NOT. True only if the

operand is 0

If c = 5 then, expression ! (c == 5) equals

to 0.

Example #5: Logical Operators

// C Program to demonstrate the working of logical operators

#include <stdio.h>int main(){

 int a = 5, b = 5, c = 10, result;

 result = (a = b) && (c > b);

 printf("(a = b) && (c > b) equals to %d \n", result);

 result = (a = b) && (c < b);

 printf("(a = b) && (c < b) equals to %d \n", result);

 result = (a = b) || (c < b);

 printf("(a = b) || (c < b) equals to %d \n", result);

 result = (a != b) || (c < b);

 printf("(a != b) || (c < b) equals to %d \n", result);

 result = !(a != b);

 printf("!(a == b) equals to %d \n", result);

 result = !(a == b);

 printf("!(a == b) equals to %d \n", result);

 return 0;}

Output

(a = b) && (c > b) equals to 1

(a = b) && (c < b) equals to 0

(a = b) || (c < b) equals to 1

Narsimha Reddy Engineering College NRCM

(a != b) || (c < b) equals to 0

!(a != b) equals to 1

!(a == b) equals to 0

Explanation of logical operator program

• (a = b) && (c > 5) evaluates to 1 because both operands (a = b) and (c > b) is 1 (true).

• (a = b) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).

• (a = b) || (c < b) evaluates to 1 because (a = b) is 1 (true).

• (a != b) || (c < b) evaluates to 0 because both operand (a != b) and (c < b) are 0 (false).

• !(a != b) evaluates to 1 because operand (a != b) is 0 (false). Hence, !(a != b) is 1 (true).

• !(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, !(a == b) is 0 (false).

Bitwise Operators

During computation, mathematical operations like: addition, subtraction, addition and division are converted

to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

~ Bitwise complement

<< Shift left

>> Shift right

Other Operators

Comma Operator

Comma operators are used to link related expressions together. For example:

int a, c = 5, d;

The sizeof operator

The sizeof is an unary operator which returns the size of data (constant, variables, array, structure etc).

Narsimha Reddy Engineering College NRCM

Example #6: sizeof Operator

#include <stdio.h>int main(){

 int a, e[10];

 float b;

 double c;

 char d;

 printf("Size of int=%lu bytes\n",sizeof(a));

 printf("Size of float=%lu bytes\n",sizeof(b));

 printf("Size of double=%lu bytes\n",sizeof(c));

 printf("Size of char=%lu byte\n",sizeof(d));

 printf("Size of integer type array having 10 elements = %lu bytes\n", sizeof(e));

 return 0;}

Output

Size of int = 4 bytes

Size of float = 4 bytes

Size of double = 8 bytes

Size of char = 1 byte

Size of integer type array having 10 elements = 40 bytes

C-Ternary Operator (?:)

A conditional operator is a ternary operator, that is, it works on 3 operands.

Conditional Operator Syntax

conditionalExpression ? expression1 : expression2

The conditional operator works as follows:

• The first expression conditionalExpression is evaluated at first. This expression evaluates to 1 if it's

and evaluates to 0 if it's false.

Narsimha Reddy Engineering College NRCM

• If conditionalExpression is true, expression1 is evaluated.

• If conditionalExpression is false, expression2 is evaluated.

Example #7: C conditional Operator

#include <stdio.h>int main(){

 char February;

 int days;

 printf("If this year is leap year, enter 1. If not enter any integer: ");

 scanf("%c",&February);

 // If test condition (February == 'l') is true, days equal to 29.

 // If test condition (February =='l') is false, days equal to 28.

 days = (February == '1') ? 29 : 28;

 printf("Number of days in February = %d",days);

 return 0;}

Output

If this year is leap year, enter 1. If not enter any integer: 1

Number of days in February = 29

Other operators such as & (reference operator), * (dereference operator) and -> (member selection) operator

will be discussed in C pointers.

C if, if...else and Nested if...else Statement

Decision making is used to specify the order in which statements are executed. In this tutorial, you will learn

to create decisions using different forms of if...else statement.

C if statement

if (testExpression)

{

 // statements

}

The if statement evaluates the test expression inside parenthesis.

If test expression is evaluated to true (nonzero), statements inside the body of if is executed.

Narsimha Reddy Engineering College NRCM

If test expression is evaluated to false (0), statements inside the body of if is skipped.

To learn more on when test expression is evaluated to nonzero (true) and 0 (false), check out relational and

logical operators.

Flowchart of if statement

Example #1: C if statement

// Program to display a number if user enters negative number// If user enters positive number, that number

won't be displayed

#include <stdio.h>int main(){

 int number;

 printf("Enter an integer: ");

 scanf("%d", &number);

 // Test expression is true if number is less than 0

 if (number < 0)

 {

 printf("You entered %d.\n", number);

 }

 printf("The if statement is easy.");

 return 0;}

Narsimha Reddy Engineering College NRCM

Output 1

Enter an integer: -2

You entered -2.

The if statement is easy.

When user enters -2, the test expression (number < 0) becomes true. Hence, You entered -2 is displayed on

the screen.

Output 2

Enter an integer: 5

The if statement in C programming is easy.

When user enters 5, the test expression (number < 0) becomes false and the statement inside the body of if is

skipped.

C if...else statement

The if...else statement executes some code if the test expression is true (nonzero) and some other code if the

test expression is false (0).

Syntax of if...else

if (testExpression) {

 // codes inside the body of if

}

else {

 // codes inside the body of else

}

If test expression is true, codes inside the body of if statement is executed and, codes inside the body of else

statement is skipped.

If test expression is false, codes inside the body of else statement is executed and, codes inside the body of if

statement is skipped.

Flowchart of if...else statement

Narsimha Reddy Engineering College NRCM

Example #2: C if...else statement

// Program to check whether an integer entered by the user is odd or even

#include <stdio.h>int main(){

 int number;

 printf("Enter an integer: ");

 scanf("%d",&number);

 // True if remainder is 0

 if(number%2 == 0)

 printf("%d is an even integer.",number);

 else

 printf("%d is an odd integer.",number);

return 0;

}

Output

Enter an integer: 7

7 is an odd integer.

Narsimha Reddy Engineering College NRCM

When user enters 7, the test expression (number%2 == 0) is evaluated to false. Hence, the statement inside

the body of else statement printf("%d is an odd integer"); is executed and the statement inside the body of if

is skipped.

Nested if...else statement (if...elseif....else Statement)

The if...else statement executes two different codes depending upon whether the test expression is true or

false. Sometimes, a choice has to be made from more than 2 possibilities.

The nested if...else statement allows you to check for multiple test expressions and execute different codes

for more than two conditions.

Syntax of nested if...else statement.

if (testExpression1)

{

 // statements to be executed if testExpression1 is true

}

else if(testExpression2)

{

 // statements to be executed if testExpression1 is false and testExpression2 is true

}

else if (testExpression 3)

{

 // statements to be executed if testExpression1 and testExpression2 is false and testExpression3 is true

}

.

.

else

{

 // statements to be executed if all test expressions are false

}

Example #3: C Nested if...else statement

// Program to relate two integers using =, > or <

#include <stdio.h>int main(){

Narsimha Reddy Engineering College NRCM

 int number1, number2;

 printf("Enter two integers: ");

 scanf("%d %d", &number1, &number2);

 //checks if two integers are equal.

 if(number1 == number2)

 {

 printf("Result: %d = %d",number1,number2);

 }

 //checks if number1 is greater than number2.

 else if (number1 > number2)

 {

 printf("Result: %d > %d", number1, number2);

 }// if both test expression is false

 else

 {

 printf("Result: %d < %d",number1, number2);

 }

 return 0;}

OutputEnter two integers: 1223

Result: 12 < 23

C Programming for Loop

Loops are used in programming to repeat a specific block of code. After reading this tutorial, you will learn

to create a for loop in C programming.

Loops are used in programming to repeat a specific block until some end condition is met. There are three

loops in C programming:

1. for loop

2. while loop

3. do...while loop

Narsimha Reddy Engineering College NRCM

for Loop

 The syntax of for loop is:

for (initializationStatement; testExpression; updateStatement)

{

 // codes

}

How for loop works?

The initialization statement is executed only once.

Then, the test expression is evaluated. If the test expression is false (0), for loop is terminated. But if the test

expression is true (nonzero), codes inside the body of for loop is executed and the update expression is

updated.

This process repeats until the test expression is false.

The for loop is commonly used when the number of iterations is known.

for loop Flowchart

Example: for loop

// Program to calculate the sum of first n natural numbers// Positive integers 1,2,3...n are known as natural

numbers

Narsimha Reddy Engineering College NRCM

#include <stdio.h>int main(){

 int num, count, sum = 0;

 printf("Enter a positive integer: ");

 scanf("%d", &num);

 // for loop terminates when n is less than count

 for(count = 1; count <= num; ++count)

 {

 sum += count;

 }

 printf("Sum = %d", sum);

 return 0;}

Output

Enter a positive integer: 10

Sum = 55

The value entered by the user is stored in variable num. Suppose, the user entered 10.

The count is initialized to 1 and the test expression is evaluated. Since, the test expression count <= num (1

less than or equal to 10) is true, the body of for loop is executed and the value of sum will equal to 1.

Then, the update statement ++count is executed and count will equal to 2. Again, the test expression is

evaluated. Since, 2 is also less than 10, the test expression is evaluated to true and the body of for loop is

executed. Now, the sum will equal 3.

This process goes on and the sum is calculated until the count reaches 11.

When the count is 11, the test expression is evaluated to 0 (false) as 11 is not less than or equal to 10.

Therefore, the loop terminates and next, the total sum is printed.

C programming while and do...while Loop

Narsimha Reddy Engineering College NRCM

Loops are used in programming to repeat a specific block of code. After reading this tutorial, you will learn

how to create a while and do...while loop in C programming.

Loops are used in programming to repeat a specific block until some end condition is met. There are three

loops in C programming:

1. for loop

2. while loop

3. do...while loop

while loop

The syntax of a while loop is:

while (testExpression)

{

 //codes

}

where, testExpression checks the condition is true or false before each loop.

How while loop works?

The while loop evaluates the test expression.

If the test expression is true (nonzero), codes inside the body of while loop is evaluated. The test expression

is evaluated again. The process goes on until the test expression is false.

When the test expression is false, the while loop is terminated.

Flowchart of while loop

Example #1: while loop

// Program to find factorial of a number

// For a positive integer n, factorial = 1*2*3...n

#include <stdio.h>

int main()

{

Narsimha Reddy Engineering College NRCM

 int number;

 long long factorial;

 printf("Enter an integer: ");

 scanf("%d",&number);

 factorial = 1;

 // loop terminates when number is less than or equal to 0

 while (number > 0)

 {

 factorial *= number; // factorial = factorial*number;

 --number;

 }

 printf("Factorial= %lld", factorial);

 return 0;

}

Output

Enter an integer: 5

Factorial = 120.

do...while loop

The do..while loop is similar to the while loop with one important difference. The body of do...while loop is

executed once, before checking the test expression. Hence, the do...while loop is executed at least once.

do...while loop Syntax

do

{

 // codes

}

Narsimha Reddy Engineering College NRCM

while (testExpression);

How do...while loop works?

The code block (loop body) inside the braces is executed once.

Then, the test expression is evaluated. If the test expression is true, the loop body is executed again. This

process goes on until the test expression is evaluated to 0 (false).

When the test expression is false (nonzero), the do...while loop is terminated.

Example #2: do...while loop

// Program to add numbers until user enters zero

#include <stdio.h>

int main()

{

 double number, sum = 0;

 // loop body is executed at least once

 do

 {

 printf("Enter a number: ");

 scanf("%lf", &number);

 sum += number;

 }

 while(number != 0.0);

 printf("Sum = %.2lf",sum);

 return 0;

}

Output

Narsimha Reddy Engineering College NRCM

Enter a number: 1.5

Enter a number: 2.4

Enter a number: -3.4

Enter a number: 4.2

Enter a number: 0

Sum = 4.70

C Programming break and continue Statement

It is sometimes desirable to skip some statements inside the loop or terminate the loop immediately without

checking the test expression.

In such cases, break and continue statements are used.

break Statement

The break statement terminates the loop (for, while and do...while loop) immediately when it is encountered.

The break statement is used with decision making statement such as if...else.

Syntax of break statement

break;

The simple code above is the syntax for break statement.

Flowchart of break statement

Narsimha Reddy Engineering College NRCM

How break statement works?

Example #1: break statement

// Program to calculate the sum of maximum of 10 numbers// Calculates sum until user enters positive

number

include <stdio.h>int main(){

 int i;

 double number, sum = 0.0;

 for(i=1; i <= 10; ++i)

 {

 printf("Enter a n%d: ",i);

 scanf("%lf",&number);

 // If user enters negative number, loop is terminated

 if(number < 0.0)

 {

 break;

 }

 sum += number; // sum = sum + number;

Narsimha Reddy Engineering College NRCM

 }

 printf("Sum = %.2lf",sum);

 return 0;}

Output

Enter a n1: 2.4

Enter a n2: 4.5

Enter a n3: 3.4

Enter a n4: -3

Sum = 10.30

This program calculates the sum of maximum of 10 numbers. It's because, when the user enters negative

number, the break statement is executed and loop is terminated.

In C programming, break statement is also used with switch...case statement.

continue Statement

The continue statement skips some statements inside the loop. The continue statement is used with decision

making statement such as if...else.

Syntax of continue Statement

continue;

Flowchart of continue Statement

Narsimha Reddy Engineering College NRCM

How continue statement works?

Example #2: continue statement

Narsimha Reddy Engineering College NRCM

// Program to calculate sum of maximum of 10 numbers// Negative numbers are skipped from calculation

include <stdio.h>int main(){

 int i;

 double number, sum = 0.0;

 for(i=1; i <= 10; ++i)

 {

 printf("Enter a n%d: ",i);

 scanf("%lf",&number);

 // If user enters negative number, loop is terminated

 if(number < 0.0)

 {

 continue;

 }

 sum += number; // sum = sum + number;

 }

 printf("Sum = %.2lf",sum);

 return 0;}

Output

Enter a n1: 1.1

Enter a n2: 2.2

Enter a n3: 5.5

Enter a n4: 4.4

Enter a n5: -3.4

Narsimha Reddy Engineering College NRCM

Enter a n6: -45.5

Enter a n7: 34.5

Enter a n8: -4.2

Enter a n9: -1000

Enter a n10: 12

Sum = 59.70

In the program, when the user enters positive number, the sum is calculated using sum += number;

statement.

When the user enters negative number, the continue statement is executed and skips the negative number

from calculation.

C switch...case Statement

The if..else..if ladder allows you to execute a block code among many alternatives. If you are checking on

the value of a single variable in if...else...if, it is better to use switch statement.

The switch statement is often faster than nested if...else (not always). Also, the syntax of switch statement is

cleaner and easy to understand.

Syntax of switch...case

switch (n)

{

 case constant1:

 // code to be executed if n is equal to constant1;

 break;

 case constant2:

 // code to be executed if n is equal to constant2;

 break;

 .

 .

 .

 default:

 // code to be executed if n doesn't match any constant

Narsimha Reddy Engineering College NRCM

}

When a case constant is found that matches the switch expression, control of the program passes to the block

of code associated with that case.

In the above pseudocode, suppose the value of n is equal to constant2. The compiler will execute the block

of code associate with the case statement until the end of switch block, or until the break statement is

encountered.

The break statement is used to prevent the code running into the next case.

switch Statement Flowchart

Example: switch Statement// Program to create a simple calculator// Performs addition, subtraction,

multiplication or division depending the input from user

include <stdio.h>

int main() {

 char operator;

 double firstNumber,secondNumber;

 printf("Enter an operator (+, -, *, /): ");

 scanf("%c", &operator);

printf("Enter two operands: ");

 scanf("%lf %lf",&firstNumber, &secondNumber);

 switch(operator)

 {

Narsimha Reddy Engineering College NRCM

 case '+':

 printf("%.1lf + %.1lf = %.1lf",firstNumber, secondNumber, firstNumber+secondNumber);

 break;

 case '-':

 printf("%.1lf - %.1lf = %.1lf",firstNumber, secondNumber, firstNumber-secondNumber);

 break;

 case '*':

 printf("%.1lf * %.1lf = %.1lf",firstNumber, secondNumber, firstNumber*secondNumber);

 break;

 case '/':

 printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber, firstNumber/firstNumber);

 break;

 // operator is doesn't match any case constant (+, -, *, /)

 default:

 printf("Error! operator is not correct");

 }

 return 0;}

Output

Enter an operator (+, -, *,): -

Enter two operands: 32.5

12.4

32.5 - 12.4 = 20.1

Narsimha Reddy Engineering College NRCM

The - operator entered by the user is stored in operator variable. And, two operands 32.5 and 12.4 are stored

in variables firstNumber and secondNumber respectively.

Then, control of the program jumps to

printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber, firstNumber/firstNumber);

Finally, the break statement ends the switch statement.

If break statement is not used, all cases after the correct case is executed.

C goto Statement

The goto statement is used to alter the normal sequence of a C program.

Syntax of goto statement

goto label;

...

...

...

label:

statement;

The label is an identifier. When goto statement is encountered, control of the program jumps to label: and

starts executing the code.

Narsimha Reddy Engineering College NRCM

Example: goto Statement

// Program to calculate the sum and average of maximum of 5 numbers// If user enters negative number, the

sum and average of previously entered positive number is displayed

include <stdio.h>

int main(){

 const int maxInput = 5;

 int i;

 double number, average, sum=0.0;

 for(i=1; i<=maxInput; ++i)

 {

 printf("%d. Enter a number: ", i);

 scanf("%lf",&number);

 // If user enters negative number, flow of program moves to label jump

 if(number < 0.0)

 goto jump;

 sum += number; // sum = sum+number;

 }

 jump:

 average=sum/(i-1);

 printf("Sum = %.2f\n", sum);

 printf("Average = %.2f", average);

 return 0;}

Output

1. Enter a number: 3

2. Enter a number: 4.3

Narsimha Reddy Engineering College NRCM

3. Enter a number: 9.3

4. Enter a number: -2.9

Sum = 16.60

Reasons to avoid goto statement

The use of goto statement may lead to code that is buggy and hard to follow. For example:

one:

for (i = 0; i < number; ++i)

{

 test += i;

 goto two;

}

two:

if (test > 5) {

 goto three;

}

...Also, goto statement allows you to do bad stuff such as jump out of scope.

That being said, goto statement can be useful sometimes. For example: to break from nested loops.

C Programming Functions

A function is a block of code that performs a specific task.

Suppose, a program related to graphics needs to create a circle and color it depending upon the radius and

color from the user. You can create two functions to solve this problem:

• create a circle function

• color function

Dividing complex problem into small components makes program easy to understand and use.

Types of functions in C programming

Depending on whether a function is defined by the user or already included in C compilers, there are two

types of functions in C programming

There are two types of functions in C programming:

Narsimha Reddy Engineering College NRCM

• Standard library functions

• User defined functions

Standard library functions

The standard library functions are built-in functions in C programming to handle tasks such as mathematical

computations, I/O processing, string handling etc.

These functions are defined in the header file. When you include the header file, these functions are

available for use. For example:

The printf() is a standard library function to send formatted output to the screen (display output on the

screen). This function is defined in "stdio.h" header file.

There are other numerous library functions defined under "stdio.h", such as scanf(), fprintf(), getchar() etc.

Once you include "stdio.h" in your program, all these functions are available for use.

User-defined functions

As mentioned earlier, C allow programmers to define functions. Such functions created by the user are

called user-defined functions.

Depending upon the complexity and requirement of the program, you can create as many user-defined

functions as you want.

How user-defined function works?

#include <stdio.h>

void functionName()

{

}

int main()

{

 functionName();

Narsimha Reddy Engineering College NRCM

}

The execution of a C program begins from the main() function.

When the compiler encounters functionName(); inside the main function, control of the program jumps to

 void functionName()

And, the compiler starts executing the codes inside the user-defined function.

The control of the program jumps to statement next to functionName(); once all the codes inside the

function definition are executed.

Narsimha Reddy Engineering College NRCM

Remember, function name is an identifier and should be unique.

This is just an overview on user-defined function. Visit these pages to learn more on:

• User-defined Function in C programming

• Types of user-defined Functions

Advantages of user-defined function

1. The program will be easier to understand, maintain and debug.

2. Reusable codes that can be used in other programs

3. A large program can be divided into smaller modules. Hence, a large project can be divided among

many programmers.

Narsimha Reddy Engineering College NRCM

C Programming User-defined functions

You will learn to create user-defined functions in C programming in this article.

A function is a block of code that performs a specific task.

C allows you to define functions according to your need. These functions are known as user-defined

functions. For example:

Suppose, you need to create a circle and color it depending upon the radius and color. You can create two

functions to solve this problem:

• createCircle() function

• color() function

Example: User-defined function

Here is a example to add two integers. To perform this task, a user-defined function addNumbers() is

defined.

#include <stdio.h>

int addNumbers(int a, int b); // function prototype

int main(){

 int n1,n2,sum;

 printf("Enters two numbers: ");

 scanf("%d %d",&n1,&n2);

 sum = addNumbers(n1, n2); // function call

 printf("sum = %d",sum);

 return 0;}

int addNumbers(int a,int b) // function definition {

 int result;

 result = a+b;

Narsimha Reddy Engineering College NRCM

 return result; // return statement}

Function prototype

A function prototype is simply the declaration of a function that specifies function's name, parameters and

return type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later be used in the program.

Syntax of function prototype

returnType functionName(type1 argument1, type2 argument2,...);

In the above example, int addNumbers(int a, int b); is the function prototype which provides following

information to the compiler:

1. name of the function is addNumbers()

2. return type of the function is int

3. two arguments of type int are passed to the function

The function prototype is not needed if the user-defined function is defined before the main() function.

Calling a function

Control of the program is transferred to the user-defined function by calling it.

Syntax of function call

functionName(argument1, argument2, ...);

In the above example, function call is made using addNumbers(n1,n2); statement inside the main().

Function definition

Function definition contains the block of code to perform a specific task i.e. in this case, adding two

numbers and returning it.

Syntax of function definition

returnType functionName(type1 argument1, type2 argument2, ...)

{

 //body of the function

}

When a function is called, the control of the program is transferred to the function definition. And, the

compiler starts executing the codes inside the body of a function.

Narsimha Reddy Engineering College NRCM

Passing arguments to a function

In programming, argument refers to the variable passed to the function. In the above example, two variables

n1 and n2 are passed during function call.

The parameters a and b accepts the passed arguments in the function definition. These arguments are called

formal parameters of the function.

The type of arguments passed to a function and the formal parameters must match, otherwise the compiler

throws error.

If n1 is of char type, a also should be of char type. If n2 is of float type, variable b also should be of float

type.A function can also be called without passing an argument.

Return Statement

The return statement terminates the execution of a function and returns a value to the calling function. The

program control is transferred to the calling function after return statement.

In the above example, the value of variable result is returned to the variable sum in the main() function.

Narsimha Reddy Engineering College NRCM

Syntax of return statement

return (expression);

For example,

return a;

return (a+b);

The type of value returned from the function and the return type specified in function prototype and function

definition must match.

Types of User-defined Functions in C Programming

For better understanding of arguments and return value from the function, user-defined functions can be

categorized as:

• Function with no arguments and no return value

• Function with no arguments and a return value

• Function with arguments and no return value

• Function with arguments and a return value.

Narsimha Reddy Engineering College NRCM

The 4 programs below check whether an integer entered by the user is a prime number or not. And, all these

programs generate the same output.

Example #1: No arguments passed and no return Value

#include <stdio.h>

void checkPrimeNumber();

int main(){

 checkPrimeNumber(); // no argument is passed to prime()

 return 0;}

// return type of the function is void becuase no value is returned from the functionvoid

checkPrimeNumber(){

 int n, i, flag=0;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 for(i=2; i <= n/2; ++i)

 {

 if(n%i == 0)

 {

 flag = 1;

 }

 }

 if (flag == 1)

 printf("%d is not a prime number.", n);

 else

 printf("%d is a prime number.", n);}

The checkPrimeNumber() function takes input from the user, checks whether it is a prime number or not and

displays it on the screen.

Narsimha Reddy Engineering College NRCM

The empty parentheses in checkPrimeNumber(); statement inside the main() function indicates that no

argument is passed to the聽 function.

The return type of the function is void. Hence, no value is returned from the function.

Example #2: No arguments passed but a return value

#include <stdio.h>int getInteger();

int main(){

 int n, i, flag = 0;

 // no argument is passed to the function

 // the value returned from the function is assigned to n

 n = getInteger();

 for(i=2; i<=n/2; ++i)

 {

 if(n%i==0){

 flag = 1;

 break;

 }

 }

 if (flag == 1)

 printf("%d is not a prime number.", n);

 else

 printf("%d is a prime number.", n);

 return 0;}

Narsimha Reddy Engineering College NRCM

// getInteger() function returns integer entered by the userint getInteger(){

 int n;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 return n;}

The empty parentheses in n = getInteger(); statement indicates that no argument is passed to the function.

And, the value returned from the function is assigned to n.

Here, the getInteger() function takes input from the user and returns it. The code to check whether a number

is prime or not is inside the main() function.

Example #3: Argument passed but no return value

#include <stdio.h>void checkPrimeAndDisplay(int n);

int main(){

 int n;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 // n is passed to the function

 checkPrimeAndDisplay(n);

 return 0;}

// void indicates that no value is returned from the functionvoid checkPrimeAndDisplay(int n){

 int i, flag = 0;

 for(i=2; i <= n/2; ++i)

 {

 if(n%i == 0){

Narsimha Reddy Engineering College NRCM

 flag = 1;

 break;

 }

 }

 if(flag == 1)

 printf("%d is not a prime number.",n);

 else

 printf("%d is a prime number.", n);}

The integer value entered by the user is passed to checkPrimeAndDisplay() function.

Here, the checkPrimeAndDisplay() function checks whether the argument passed is a prime number or not

and displays the appropriate message.

Example #4: Argument passed and a return value

#include <stdio.h>int checkPrimeNumber(int n);

int main(){

 int n, flag;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 // n is passed to the checkPrimeNumber() function

 // the value returned from the function is assigned to flag variable

 flag = checkPrimeNumber(n);

 if(flag==1)

 printf("%d is not a prime number",n);

 else

 printf("%d is a prime number",n);

Narsimha Reddy Engineering College NRCM

 return 0;}

// integer is returned from the functionint checkPrimeNumber(int n){

 /* Integer value is returned from function checkPrimeNumber() */

 int i;

 for(i=2; i <= n/2; ++i)

 {

 if(n%i == 0)

 return 1;

 }

 return 0;}

The input from the user is passed to checkPrimeNumber() function.The checkPrimeNumber() function

checks whether the passed argument is prime or not. If the passed argument is a prime number, the function

returns 0. If the passed argument is a non-prime number, the function returns 1. The return value is assigned

to flag variable.

Then, the appropriate message is displayed from the main() function.

Which approach is better?

Well, it depends on the problem you are trying to solve. In case of this problem, the last approach is better.

A function should perform a specific task. The checkPrimeNumber() function doesn't take input from the

user nor it displays the appropriate message. It only checks whether a number is prime or not, which makes

code modular, easy to understand and debug.

C Programming Recursion

A function that calls itself is known as a recursive function. And, this technique is known as recursion.

How recursion works?

void recurse()

{

 recurse();

Narsimha Reddy Engineering College NRCM

}

int main()

{

 recurse();

}

The recursion continues until some condition is met to prevent it.

To prevent infinite recursion, if...else statement (or similar approach) can be used where one branch makes

the recursive call and other doesn't.

Example: Sum of Natural Numbers Using Recursion

#include <stdio.h>int sum(int n);

int main(){

 int number, result;

Narsimha Reddy Engineering College NRCM

 printf("Enter a positive integer: ");

 scanf("%d", &number);

 result = sum(number);

 printf("sum=%d", result);}

int sum(int num){

 if (num!=0)

 return num + sum(num-1); // sum() function calls itself

 else

 return num;}

Output

Enter a positive integer:

3

6

Initially, the sum() is called from the main() function with number passed as an argument.

Suppose, the value of num is 3 initially. During next function call, 2 is passed to the sum() function. This

process continues until num is equal to 0.

When num is equal to 0, the if condition fails and the else part is executed returning the sum of integers to

the main() function.

Narsimha Reddy Engineering College NRCM

Advantages and Disadvantages of Recursion

Recursion makes program elegant and cleaner. All algorithms can be defined recursively which makes it

easier to visualize and prove.聽

If the speed of the program is vital then, you should avoid using recursion. Recursions use more memory

and are generally slow. Instead, you can use loop.

Scope and Lifetime of a variable.

Every variable in C programming has two properties: type and storage class.

Type refers to the data type of a variable. And, storage class determines the scope and lifetime of a variable.

There are 4 types of storage class:

1. automatic

2. external

Narsimha Reddy Engineering College NRCM

3. static

4. register

Local Variable

The variables declared inside the function are automatic or local variables.

The local variables exist only inside the function in which it is declared. When the function exits, the local

variables are destroyed.

int main() {

 int n; // n is a local variable to main() function

}

void func() {

 int n1; // n1 is local to func() function

}

In the above code, n1 is destroyed when func() exits. Likewise, n gets destroyed when main() exits.

Global Variable

Variables that are declared outside of all functions are known as external variables. External or global

variables are accessible to any function.

Example #1: External Variable

#include <stdio.h>void display();

int n = 5; // global variable

int main(){

 ++n; // variable n is not declared in the main() function

 display();

 return 0;}

void display(){

 ++n; // variable n is not declared in the display() function

 printf("n = %d", n);}

Output

n = 7

Suppose, a global variable is declared in file1. If you try to use that variable in a different file file2, the

compiler will complain. To solve this problem, keyword extern is used in file2 to indicate that the external

variable is declared in another file.

Register Variable

The register keyword is used to declare register variables. Register variables were supposed to be faster than

local variables.

However, modern compilers are very good at code optimization and there is a rare chance that using register

variables will make your program faster.聽

Narsimha Reddy Engineering College NRCM

Unless you are working on embedded system where you know how to optimize code for the given

application, there is no use of register variables.

Static Variable

A static variable is declared by using keyword static. For example;

static int i;

The value of a static variable persists until the end of the program.

Example #2: Static Variable

#include <stdio.h>void display();

int main(){

 display();

 display();}void display(){

 static int c = 0;

 printf("%d ",c);

 c += 5;}

Output

0 5

During the first function call, the value of c is equal to 0. Then, it's value is increased by 5.

During the second function call, variable c is not initialized to 0 again. It's because c is a static variable. So,

5 is displayed on the screen.

C Programming Arrays

An array is a collection of data that holds fixed number of values of same type. For example: if you want to

store marks of 100 students, you can create an array for it.

float marks[100];

The size and type of arrays cannot be changed after its declaration.

Arrays are of two types:

1. One-dimensional arrays

2. Multidimensional arrays (will be discussed in next chapter)

Narsimha Reddy Engineering College NRCM

How to declare an array in C?

data_type array_name[array_size];

For example,

float mark[5];

Here, we declared an array, mark, of floating-point type and size 5. Meaning, it can hold 5 floating-point

values.

Elements of an Array and How to access them?

You can access elements of an array by indices.

Suppose you declared an array mark as above. The first element is mark[0], second element is mark[1] and

so on.

Few key notes:

• Arrays have 0 as the first index not 1. In this example, mark[0]

• If the size of an array is n, to access the last element, (n-1) index is used. In this example, mark[4]

• Suppose the starting address of mark[0] is 2120d. Then, the next address, a[1], will be 2124d,

address of a[2] will be 2128d and so on. It's because the size of a float is 4 bytes.

How to initialize an array in C programming?

It's possible to initialize an array during declaration. For example,

int mark[5] = {19, 10, 8, 17, 9};

Another method to initialize array during declaration:

int mark[] = {19, 10, 8, 17, 9};

Narsimha Reddy Engineering College NRCM

Here,

mark[0] is equal to 19

mark[1] is equal to 10

mark[2] is equal to 8

mark[3] is equal to 17

mark[4] is equal to 9

How to insert and print array elements?

int mark[5] = {19, 10, 8, 17, 9}

// insert different value to third element

mark[3] = 9;

// take input from the user and insert in third elementscanf("%d", &mark[2]);

// take input from the user and insert in (i+1)th element

scanf("%d", &mark[i]);

// print first element of an array

printf("%d", mark[0]);

// print ith element of an array

printf("%d", mark[i-1]);

Example: C Arrays

// Program to find the average of n (n < 10) numbers using arrays

#include <stdio.h>int main(){

 int marks[10], i, n, sum = 0, average;

 printf("Enter n: ");

 scanf("%d", &n);

 for(i=0; i<n; ++i)

 {

 printf("Enter number%d: ",i+1);

 scanf("%d", &marks[i]);

 sum += marks[i];

Narsimha Reddy Engineering College NRCM

 }

 average = sum/n;

 printf("Average marks = %d", average);

 return 0;

}

Output

Enter n: 5

Enter number1: 45

Enter number2: 35

Enter number3: 38

Enter number4: 31

Enter number5: 49

Average = 39

Important thing to remember when working with C arrays

Suppose you declared an array of 10 elements. Let's say,

int testArray[10];

You can use the array members from testArray[0] to testArray[9].

If you try to access array elements outside of its bound, let's say testArray[12], the compiler may not show

any error. However, this may cause unexpected output (undefined behavior).

Before going further, checkout these array articles:

C Programming Multidimensional Arrays

In this section, you will learn to work with multidimensional arrays (two dimensional and three dimensional

array).In C programming, you can create array of an array known as multidimensional array. For example,

float x[3][4];

Here, x is a two-dimensional (2d) array. The array can hold 12 elements. You can think the array as table

with 3 row and each row has 4 column.

Narsimha Reddy Engineering College NRCM

Similarly, you can declare a three-dimensional (3d) array. For example,

float y[2][4][3];

Here,The array y can hold 24 elements.

You can think this example as: Each 2 elements have 4 elements, which makes 8 elements and each 8

elements can have 3 elements. Hence, the total number of elements is 24.

How to initialize a multidimensional array?

There is more than one way to initialize a multidimensional array.

Initialization of a two dimensional array

// Different ways to initialize two dimensional array

int c[2][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[2][3] = {1, 3, 0, -1, 5, 9};

Above code are three different ways to initialize a two dimensional arrays.

Initialization of a three dimensional array.

You can initialize a three dimensional array in a similar way like a two dimensional array. Here's an

example,

int test[2][3][4] = {

 { {3, 4, 2, 3}, {0, -3, 9, 11}, {23, 12, 23, 2} },

Narsimha Reddy Engineering College NRCM

 { {13, 4, 56, 3}, {5, 9, 3, 5}, {3, 1, 4, 9} }

 };

Example #1: Two Dimensional Array to store and display values

// C program to store temperature of two cities for a week and display it.

#include <stdio.h>

const int CITY = 2;const int WEEK = 7;

int main(){

 int temperature[CITY][WEEK];

 for (int i = 0; i < CITY; ++i) {

 for(int j = 0; j < WEEK; ++j) {

 printf("City %d, Day %d: ", i+1, j+1);

 scanf("%d", &temperature[i][j]);

 }

 }

 printf("\nDisplaying values: \n\n");

 for (int i = 0; i < CITY; ++i) {

 for(int j = 0; j < WEEK; ++j)

 {

 printf("City %d, Day %d = %d\n", i+1, j+1, temperature[i][j]);

 }

 }

 return 0;}

Output

City 1, Day 1: 33

City 1, Day 2: 34

City 1, Day 3: 35

Narsimha Reddy Engineering College NRCM

City 1, Day 4: 33

City 1, Day 5: 32

City 1, Day 6: 31

City 1, Day 7: 30

City 2, Day 1: 23

City 2, Day 2: 22

City 2, Day 3: 21

City 2, Day 4: 24

City 2, Day 5: 22

City 2, Day 6: 25

City 2, Day 7: 26

Displaying values:

City 1, Day 1 = 33

City 1, Day 2 = 34

City 1, Day 3 = 35

City 1, Day 4 = 33

City 1, Day 5 = 32

City 1, Day 6 = 31

City 1, Day 7 = 30

City 2, Day 1 = 23

City 2, Day 2 = 22

City 2, Day 3 = 21

City 2, Day 4 = 24

City 2, Day 5 = 22

City 2, Day 6 = 25

City 2, Day 7 = 26

Narsimha Reddy Engineering College NRCM

Example #2: Sum of two matrices using Two dimensional arrays

C program to find the sum of two matrices of order 2*2 using multidimensional arrays.

#include <stdio.h>int main(){

 float a[2][2], b[2][2], c[2][2];

 int i, j;

 // Taking input using nested for loop

 printf("Enter elements of 1st matrix\n");

 for(i=0; i<2; ++i)

 for(j=0; j<2; ++j)

 {

 printf("Enter a%d%d: ", i+1, j+1);

 scanf("%f", &a[i][j]);

 }

 // Taking input using nested for loop

 printf("Enter elements of 2nd matrix\n");

 for(i=0; i<2; ++i)

 for(j=0; j<2; ++j)

 {

 printf("Enter b%d%d: ", i+1, j+1);

 scanf("%f", &b[i][j]);

 }

 // adding corresponding elements of two arrays

 for(i=0; i<2; ++i)

 for(j=0; j<2; ++j)

 {

 c[i][j] = a[i][j] + b[i][j];

 }

 // Displaying the sum

 printf("\nSum Of Matrix:");

Narsimha Reddy Engineering College NRCM

 for(i=0; i<2; ++i)

 for(j=0; j<2; ++j)

 {

 printf("%.1f\t", c[i][j]);

 if(j==1)

 printf("\n");

 }return 0;}

Ouput

Enter elements of 1st matrix

Enter a11: 2;

Enter a12: 0.5;

Enter a21: -1.1;

Enter a22: 2;

Enter elements of 2nd matrix

Enter b11: 0.2;

Enter b12: 0;

Enter b21: 0.23;

Enter b22: 23;

Sum Of Matrix:

2.2 0.5

-0.9 25.0

Example 3: Three Dimensional Array

C Program to store values entered by the user in a three-dimensional array and display it.

#include <stdio.h>int main(){

 // this array can store 12 elements

 int i, j, k, test[2][3][2];

 printf("Enter 12 values: \n");

 for(i = 0; i < 2; ++i) {

 for (j = 0; j < 3; ++j) {

Narsimha Reddy Engineering College NRCM

 for(k = 0; k < 2; ++k) {

 scanf("%d", &test[i][j][k]);

 }

 }

 }

 // Displaying values with proper index.

 printf("\nDisplaying values:\n");

 for(i = 0; i < 2; ++i) {

 for (j = 0; j < 3; ++j) {

 for(k = 0; k < 2; ++k) {

 printf("test[%d][%d][%d] = %d\n", i, j, k, test[i][j][k]);

 }

 }

 }

 return 0;}

Output

Enter 12 values:

1

2

3

4

5

6

7

8

9

10

11

Narsimha Reddy Engineering College NRCM

12

Displaying Values:

test[0][0][0] = 1

test[0][0][1] = 2

test[0][1][0] = 3

test[0][1][1] = 4

test[0][2][0] = 5

test[0][2][1] = 6

test[1][0][0] = 7

test[1][0][1] = 8

test[1][1][0] = 9

test[1][1][1] = 10

test[1][2][0] = 11

test[1][2][1] = 12

How to pass arrays to a function in C Programming?

In C programming, a single array element or an entire array can be passed to a function.

This can be done for both one-dimensional array or a multi-dimensional array.

Passing One-dimensional Array In Function

Single element of an array can be passed in similar manner as passing variable to a function.

C program to pass a single element of an array to function

#include <stdio.h>void display(int age){

 printf("%d", age);}

int main(){

 int ageArray[] = { 2, 3, 4 };

 display(ageArray[2]); //Passing array element ageArray[2] only.

 return 0;}

Output

Narsimha Reddy Engineering College NRCM

4

Passing an entire one-dimensional array to a function

While passing arrays as arguments to the function, only the name of the array is passed (,i.e, starting address

of memory area is passed as argument).

C program to pass an array containing age of person to a function. This function should find average

age and display the average age in main function.

#include <stdio.h>float average(float age[]);

int main(){

 float avg, age[] = { 23.4, 55, 22.6, 3, 40.5, 18 };

 avg = average(age); /* Only name of array is passed as argument. */

 printf("Average age=%.2f", avg);

 return 0;}

float average(float age[]){

 int i;

 float avg, sum = 0.0;

 for (i = 0; i < 6; ++i) {

 sum += age[i];

 }

 avg = (sum / 6);

 return avg;}

Output

Average age=27.08

Passing Multi-dimensional Arrays to Function

To pass two-dimensional array to a function as an argument, starting address of memory area reserved is

passed as in one dimensional array

#Example: Pass two-dimensional arrays to a function

Narsimha Reddy Engineering College NRCM

#include <stdio.h>void displayNumbers(int num[2][2]);int main(){

 int num[2][2], i, j;

 printf("Enter 4 numbers:\n");

 for (i = 0; i < 2; ++i)

 for (j = 0; j < 2; ++j)

 scanf("%d", &num[i][j]);

 // passing multi-dimensional array to displayNumbers function

 displayNumbers(num);

 return 0;}

void displayNumbers(int num[2][2]){

 // Instead of the above line,

 // void displayNumbers(int num[][2]) is also valid

 int i, j;

 printf("Displaying:\n");

 for (i = 0; i < 2; ++i)

 for (j = 0; j < 2; ++j)

 printf("%d\n", num[i][j]);}

Output

Enter 4 numbers:

2

3

4

5

Displaying:

2

3

4

5

Narsimha Reddy Engineering College NRCM

C Programming Pointers and Arrays

Arrays are closely related to pointers in C programming but the important difference between them is that, a

pointer variable takes different addresses as value whereas, in case of array it is fixed.

This can be demonstrated by an example:

#include <stdio.h>int main(){

 char charArr[4];

 int i;

 for(i = 0; i < 4; ++i)

 {

 printf("Address of charArr[%d] = %u\n", i, &charArr[i]);

 }

 return 0;}

When you run the program, the output will be:

Address of charArr[0] = 28ff44

Address of charArr[1] = 28ff45

Address of charArr[2] = 28ff46

Address of charArr[3] = 28ff47

Note: You may get different address of an array.

Notice, that there is an equal difference (difference of 1 byte) between any two consecutive elements of

array charArr.

But, since pointers just point at the location of another variable, it can store any address.

Relation between Arrays and Pointers

Consider an array:

Narsimha Reddy Engineering College NRCM

int arr[4];

In C programming, name of the array always points to address of the first element of an array.

In the above example,聽 arr and &arr[0]聽 points to the address of the first element.

&arr[0] is equivalent to arr

Since, the addresses of both are the same, the values of arr and &arr[0] are also the same.

arr[0] is equivalent to *arr (value of an address of the pointer)

Similarly,

&arr[1] is equivalent to (arr + 1) AND, arr[1] is equivalent to *(arr + 1).

&arr[2] is equivalent to (arr + 2) AND, arr[2] is equivalent to *(arr + 2).

&arr[3] is equivalent to (arr + 3) AND, arr[3] is equivalent to *(arr + 3).

.

.

&arr[i] is equivalent to (arr + i) AND, arr[i] is equivalent to *(arr + i).

In C, you can declare an array and can use pointer to alter the data of an array.

Example: Program to find the sum of six numbers with arrays and pointers

#include <stdio.h>int main(){

 int i, classes[6],sum = 0;

 printf("Enter 6 numbers:\n");

 for(i = 0; i < 6; ++i)

 {

 // (classes + i) is equivalent to &classes[i]

 scanf("%d",(classes + i));

Narsimha Reddy Engineering College NRCM

 // *(classes + i) is equivalent to classes[i]

 sum += *(classes + i);

 }

 printf("Sum = %d", sum);

 return 0;}

Output

Enter 6 numbers:

2

3

4

5

3

4

Sum = 21

 Call by Reference: Using pointers [With Examples]

When a pointer is passed as an argument to a function, address of the memory location is passed instead of

the value.

This is because, pointer stores the location of the memory, and not the value.

Example of Pointer And Functions

Program to swap two number using call by reference.

 /* C Program to swap two numbers using pointers and function. */#include <stdio.h>void swap(int *n1, int

*n2);

int main(){

 int num1 = 5, num2 = 10;

 // address of num1 and num2 is passed to the swap function

 swap(&num1, &num2);

 printf("Number1 = %d\n", num1);

Narsimha Reddy Engineering College NRCM

 printf("Number2 = %d", num2);

 return 0;}

void swap(int * n1, int * n2){

 // pointer n1 and n2 points to the address of num1 and num2 respectively

 int temp;

 temp = *n1;

 *n1 = *n2;

 *n2 = temp;}

Output

Number1 = 10

Number2 = 5

The address of memory location num1 and num2 are passed to the function swap and the pointers *n1 and

*n2 accept those values.

So, now the pointer n1 and n2 points to the address of num1 and num2 respectively.

When, the value of pointers are changed, the value in the pointed memory location also changes

correspondingly.

Hence, changes made to *n1 and *n2 are reflected in num1 and num2 in the main function.

This technique is known as Call by Reference in C programming.

C Dynamic Memory Allocation

In C, the exact size of array is unknown until compile time, i.e., the time when a compiler compiles your

code into a computer understandable language. So, sometimes the size of the array can be insufficient or

more than required.

Dynamic memory allocation allows your program to obtain more memory space while running, or to release

it if it's not required.

In simple terms, Dynamic memory allocation allows you to manually handle memory space for your

program.

Although, C language inherently does not have any technique to allocate memory dynamically, there are 4

library functions under "stdlib.h" for dynamic memory allocation.

Narsimha Reddy Engineering College NRCM

Function Use of Function

malloc()
Allocates requested size of bytes and returns a pointer first byte of allocated

space

calloc()
Allocates space for an array elements, initializes to zero and then returns a

pointer to memory

free() deallocate the previously allocated space

realloc() Change the size of previously allocated space

C malloc()

The name malloc stands for "memory allocation".

The function malloc() reserves a block of memory of specified size and return a pointer of type void which

can be casted into pointer of any form.

Syntax of malloc()

ptr = (cast-type*) malloc(byte-size)

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory with size of

byte size. If the space is insufficient, allocation fails and returns NULL pointer.

ptr = (int*) malloc(100 * sizeof(int));

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes respectively and the

pointer points to the address of first byte of memory.

C calloc()

The name calloc stands for "contiguous allocation".

The only difference between malloc() and calloc() is that, malloc() allocates single block of memory

whereas calloc() allocates multiple blocks of memory each of same size and sets all bytes to zero.

Syntax of calloc()

ptr = (cast-type*)calloc(n, element-size);

This statement will allocate contiguous space in memory for an array of n elements. For example:

ptr = (float*) calloc(25, sizeof(float));

Narsimha Reddy Engineering College NRCM

This statement allocates contiguous space in memory for an array of 25 elements each of size of float, i.e, 4

bytes.

C free()

Dynamically allocated memory created with either calloc() or malloc() doesn't get freed on its own. You

must explicitly use free() to release the space.

syntax of free()

free(ptr);

This statement frees the space allocated in the memory pointed by ptr.

Example #1: Using C malloc() and free()

Write a C program to find sum of n elements entered by user. To perform this program, allocate

memory dynamically using malloc() function.

#include <stdio.h>#include <stdlib.h>

int main(){

 int num, i, *ptr, sum = 0;

 printf("Enter number of elements: ");

 scanf("%d", &num);

 ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc

 if(ptr == NULL)

 {

 printf("Error! memory not allocated.");

 exit(0);

 }

 printf("Enter elements of array: ");

 for(i = 0; i < num; ++i)

 {

Narsimha Reddy Engineering College NRCM

 scanf("%d", ptr + i);

 sum += *(ptr + i);

 }

 printf("Sum = %d", sum);

 free(ptr);

 return 0;}

Example #2: Using C calloc() and free()

Write a C program to find sum of n elements entered by user. To perform this program, allocate

memory dynamically using calloc() function.

#include <stdio.h>#include <stdlib.h>

int main(){

 int num, i, *ptr, sum = 0;

 printf("Enter number of elements: ");

 scanf("%d", &num);

 ptr = (int*) calloc(num, sizeof(int));

 if(ptr == NULL)

 {

 printf("Error! memory not allocated.");

 exit(0);

 }

 printf("Enter elements of array: ");

 for(i = 0; i < num; ++i)

 {

 scanf("%d", ptr + i);

 sum += *(ptr + i);

Narsimha Reddy Engineering College NRCM

 }

 printf("Sum = %d", sum);

 free(ptr);

 return 0;}

C realloc()

If the previously allocated memory is insufficient or more than required, you can change the previously

allocated memory size using realloc().

Syntax of realloc()

ptr = realloc(ptr, newsize);

Here, ptr is reallocated with size of newsize.

Example #3: Using realloc()

#include <stdio.h>#include <stdlib.h>

int main(){

 int *ptr, i , n1, n2;

 printf("Enter size of array: ");

 scanf("%d", &n1);

 ptr = (int*) malloc(n1 * sizeof(int));

 printf("Address of previously allocated memory: ");

 for(i = 0; i < n1; ++i)

 printf("%u\t",ptr + i);

 printf("\nEnter new size of array: ");

 scanf("%d", &n2);

 ptr = realloc(ptr, n2);

 for(i = 0; i < n2; ++i)

 printf("%u\t", ptr + i);

 return 0;}

C Programming Structure

Structure is a collection of variables of different types under a single name.

For example: You want to store some information about a person: his/her name, citizenship number and

salary. You can easily create different variables name, citNo, salary to store these information separately.

Narsimha Reddy Engineering College NRCM

However, in the future, you would want to store information about multiple persons. Now, you'd need to

create different variables for each information per person: name1, citNo1, salary1, name2, citNo2, salary2

You can easily visualize how big and messy the code would look. Also, since no relation between the

variables (information) would exist, it's going to be a daunting task.

A better approach will be to have a collection of all related information under a single name Person, and use

it for every person. Now, the code looks much cleaner, readable and efficient as well.

This collection of all related information under a single name Person is a structure.

Structure Definition in C

Keyword struct is used for creating a structure.

Syntax of structure

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memeber;

};

Note: Don't forget the semicolon };聽 in the ending line.

We can create the structure for a person as mentioned above as:

struct person

{

 char name[50];

 int citNo;

 float salary;

};

This declaration above creates the derived data type struct person.

Structure variable declaration

When a structure is defined, it creates a user-defined type but, no storage or memory is allocated.

For the above structure of a person, variable can be declared as:

struct person

{

 char name[50];

 int citNo;

 float salary;

};

int main()

Narsimha Reddy Engineering College NRCM

{

 struct person person1, person2, person3[20];

 return 0;

}

Another way of creating a structure variable is:

struct person

{

 char name[50];

 int citNo;

 float salary;

} person1, person2, person3[20];

In both cases, two variables person1, person2 and an array person3 having 20 elements of type struct

person are created.

Accessing members of a structure

There are two types of operators used for accessing members of a structure.

1. Member operator(.)

2. Structure pointer operator(->)

Any member of a structure can be accessed as:

structure_variable_name.member_name

Suppose, we want to access salary for variable person2. Then, it can be accessed as:

person2.salary

Example of structure

Write a C program to add two distances entered by user. Measurement of distance should be in inch

and feet. (Note: 12 inches = 1 foot)

#include <stdio.h>struct Distance{

 int feet;

 float inch;} dist1, dist2, sum;

int main(){

Narsimha Reddy Engineering College NRCM

 printf("1st distance\n");

 // Input of feet for structure variable dist1

 printf("Enter feet: ");

 scanf("%d", &dist1.feet);

 // Input of inch for structure variable dist1

 printf("Enter inch: ");

 scanf("%f", &dist1.inch);

 printf("2nd distance\n");

 // Input of feet for structure variable dist2

 printf("Enter feet: ");

 scanf("%d", &dist2.feet);

 // Input of feet for structure variable dist2

 printf("Enter inch: ");

 scanf("%f", &dist2.inch);

 sum.feet = dist1.feet + dist2.feet;

 sum.inch = dist1.inch + dist2.inch;

 if (sum.inch > 12)

 {

 //If inch is greater than 12, changing it to feet.

 ++sum.feet;

 sum.inch = sum.inch - 12;

Narsimha Reddy Engineering College NRCM

 }

 // printing sum of distance dist1 and dist2

 printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);

 return 0;}

Output

1st distance

Enter feet: 12

Enter inch: 7.9

2nd distance

Enter feet: 2

Enter inch: 9.8

Sum of distances = 15'-5.7"

Keyword typedef while using structure

Writing struct structure_name variable_name; to declare a structure variable isn't intuitive as to what it

signifies, and takes some considerable amount of development time.

So, developers generally use typedef to name the structure as a whole. For example:

typedef struct complex

{

 int imag;

 float real;

} comp;

int main()

{

 comp comp1, comp2;

}

Narsimha Reddy Engineering College NRCM

Here, typedef keyword is used in creating a type comp聽(which is of type as struct complex).

Then, two structure variables comp1 and comp2 are created by this comp type.

Structures within structures

Structures can be nested within other structures in C programming.

struct complex

{

 int imag_value;

 float real_value;

};

struct number

{

 struct complex comp;

 int real;

} num1, num2;

Suppose, you want to access imag_value for num2 structure variable then, following structure member is

used.

num2.comp.imag_value

Passing structures to a function

There are mainly two ways to pass structures to a function:

1. Passing by value

2. Passing by reference

C Programming Structure and Pointer

Narsimha Reddy Engineering College NRCM

Structures can be created and accessed using pointers. A pointer variable of a structure can be created as

below:

struct name {

 member1;

 member2;

 .

 .

};

int main(){

 struct name *ptr;

}

Here, the pointer variable of type struct name is created.

Accessing structure's member through pointer

A structure's member can be accesssed through pointer in two ways:

1. Referencing pointer to another address to access memory

2. Using dynamic memory allocation

1. Referencing pointer to another address to access the memory_Consider an example to access

structure's member through pointer.

#include <stdio.h>typedef struct person{

 int age;

 float weight;};

int main(){

Narsimha Reddy Engineering College NRCM

 struct person *personPtr, person1;

 personPtr = &person1; // Referencing pointer to memory address of person1

printf("Enter integer: ");

 scanf("%d",&(*personPtr).age);

 printf("Enter number: ");

 scanf("%f",&(*personPtr).weight);

 printf("Displaying: ");

 printf("%d%f",(*personPtr).age,(*personPtr).weight);

 return 0;}

In this example, the pointer variable of type struct person is referenced to the address of person1. Then, only

the structure member through pointer can can accessed.

Using -> operator to access structure pointer member

Structure pointer member can also be accessed using -> operator.

(*personPtr).age is same as personPtr->age

(*personPtr).weight is same as personPtr->weight

2. Accessing structure member through pointer using dynamic memory allocation

To access structure member using pointers, memory can be allocated dynamically using malloc() function

defined under "stdlib.h" header file.

Syntax to use malloc()

ptr = (cast-type*) malloc(byte-size)

Example to use structure's member through pointer using malloc() function.

#include <stdio.h>#include <stdlib.h>struct person {

 int age;

 float weight;

 char name[30];};

int main(){

 struct person *ptr;

 int i, num;

 printf("Enter number of persons: ");

 scanf("%d", &num);

Narsimha Reddy Engineering College NRCM

 ptr = (struct person*) malloc(num * sizeof(struct person));

 // Above statement allocates the memory for n structures with pointer personPtr pointing to base address

 for(i = 0; i < num; ++i)

 {

 printf("Enter name, age and weight of the person respectively:\n");

 scanf("%s%d%f", &(ptr+i)->name, &(ptr+i)->age, &(ptr+i)->weight);

 }

 printf("Displaying Infromation:\n");

 for(i = 0; i < num; ++i)

 printf("%s\t%d\t%.2f\n", (ptr+i)->name, (ptr+i)->age, (ptr+i)->weight);

 return 0;}

Output

Enter number of persons: 2

Enter name, age and weight of the person respectively:

Adam

2

3.2

Enter name, age and weight of the person respectively:

Eve

6

2.3

Displaying Information:

Adam 2 3.20

Eve 6 2.30

How to pass structure to a function in C programming?

In this article, you'll find relevant examples to pass structures as an argument to a function, and use them in

your program.

Narsimha Reddy Engineering College NRCM

In C, structure can be passed to functions by two methods:

1. Passing by value (passing actual value as argument)

2. Passing by reference (passing address of an argument)

Passing structure by value

A structure variable can be passed to the function as an argument as a normal variable.

If structure is passed by value, changes made to the structure variable inside the function definition does not

reflect in the originally passed structure variable.

C program to create a structure student, containing name and roll and display the information.

#include <stdio.h>struct student{

 char name[50];

 int roll;};

void display(struct student stu);// function prototype should be below to the structure declaration otherwise

compiler shows error

int main(){

 struct student stud;

 printf("Enter student's name: ");

 scanf("%s", &stud.name);

 printf("Enter roll number:");

 scanf("%d", &stud.roll);

 display(stud); // passing structure variable stud as argument

 return 0;}void display(struct student stu){

 printf("Output\nName: %s",stu.name);

 printf("\nRoll: %d",stu.roll);}

Output

Enter student's name: Kevin Amla

Enter roll number: 149

Output

Name: Kevin Amla

Roll: 149

Narsimha Reddy Engineering College NRCM

Passing structure by reference

The memory address of a structure variable is passed to function while passing it by reference.

If structure is passed by reference, changes made to the structure variable inside function definition reflects

in the originally passed structure variable.

C program to add two distances (feet-inch system) and display the result without the return

statement.

#include <stdio.h>struct distance{

 int feet;

 float inch;};void add(struct distance d1,struct distance d2, struct distance *d3);

int main(){

 struct distance dist1, dist2, dist3;

 printf("First distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist1.feet);

 printf("Enter inch: ");

 scanf("%f", &dist1.inch);

 printf("Second distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist2.feet);

 printf("Enter inch: ");

 scanf("%f", &dist2.inch);

 add(dist1, dist2, &dist3);

 //passing structure variables dist1 and dist2 by value whereas passing structure variable dist3 by

reference

 printf("\nSum of distances = %d\'-%.1f\"", dist3.feet, dist3.inch);

 return 0;}void add(struct distance d1,struct distance d2, struct distance *d3) {

 //Adding distances d1 and d2 and storing it in d3

 d3->feet = d1.feet + d2.feet;

 d3->inch = d1.inch + d2.inch;

Narsimha Reddy Engineering College NRCM

 if (d3->inch >= 12) { /* if inch is greater or equal to 12, converting it to feet. */

 d3->inch -= 12;

 ++d3->feet;

}}

Output

First distance

Enter feet: 12

Enter inch: 6.8

Second distance

Enter feet: 5

Enter inch: 7.5

Sum of distances = 18'-2.3"

In this program, structure variables dist1 and dist2 are passed by value to the add function (because value of

dist1 and dist2 does not need to be displayed in main function).But, dist3 is passed by reference ,i.e, address

of dist3(&dist3) is passed as an argument.

Due to this, the structure pointer variable d3 inside the add function points to the address of dist3 from the

calling main function. So, any change made to the d3 variable is seen in dist3 variable in main function.

As a result, the correct sum is displayed in the output.

C Programming Unions

Unions are quite similar to structures in C. Like structures, unions are also derived types.

union car

{

 char name[50];

 int price;

};

Defining a union is as easy as replacing the keyword struct with the keyword union.

How to create union variables?

Union variables can be created in similar manner as structure variables.

Narsimha Reddy Engineering College NRCM

union car

{

 char name[50];

 int price;

} car1, car2, *car3;

OR

union car

{

 char name[50];

 int price;

};

int main()

{

 union car car1, car2, *car3;

 return 0;

}

In both cases, union variables car1, car2 and union pointer variable car3 of type union car is created.

Accessing members of a union

Again, the member of unions can be accessed in similar manner as structures.

In the above example, suppose you want to access price for union variable car1, it can be accessed as:

car1.price

Likewise, if you want to access price for the union pointer variable car3, it can be accessed as:

(*car3).price

or;

car3->price

Difference between union and structure

Narsimha Reddy Engineering College NRCM

Though unions are similar to structure in so many ways, the difference between them is crucial to

understand.

The primary difference can be demonstrated by this example:

#include <stdio.h>union unionJob{

 //defining a union

 char name[32];

 float salary;

 int workerNo;} uJob;

struct structJob{

 char name[32];

 float salary;

 int workerNo;} sJob;

int main(){

 printf("size of union = %d", sizeof(uJob));

 printf("\nsize of structure = %d", sizeof(sJob));

 return 0;}

Output

size of union = 32

size of structure = 40

More memory is allocated to structures than union

As seen in the above example, there is a difference in memory allocation between union and structure.

The amount of memory required to store a structure variable is the sum of memory size of all members.

But, the memory required to store a union variable is the memory required for the largest element of an

union.

Narsimha Reddy Engineering College NRCM

Only one union member can be accessed at a time

In the case of structure, all of its members can be accessed at any time.

But, in the case of union, only one of its members can be accessed at a time and all other members will

contain garbage values.

#include <stdio.h>union job{

 char name[32];

 float salary;

 int workerNo;} job1;

int main(){

 printf("Enter name:\n");

 scanf("%s", &job1.name);

 printf("Enter salary: \n");

 scanf("%f", &job1.salary);

 printf("Displaying\nName :%s\n", job1.name);

 printf("Salary: %.1f", job1.salary);

 return 0;}

Output

Enter name

Hillary

Enter salary

1234.23

Narsimha Reddy Engineering College NRCM

Displaying

Name: f%Bary

Salary: 1234.2

Note: You may get different garbage value for the name.

Initially in the program,聽 Hillary is stored in job1.name and all other members of job1, i.e. salary,

workerNo, will contain garbage values.

But, when user enters the value of salary, 1234.23 will be stored in job1.salary and other members, i.e. name,

workerNo, will now contain garbage values.

Thus in the output, salary is printed accurately but, name displays some random string.

Passing Union To a Function

Union can be passed in similar manner as structures in C programming.

C Programming Files I/O

There are a large number of functions to handle file I/O (Input Output) in C. In this tutorial, you will learn to

handle standard I/O in C using fprintf(), fscanf(), fread(), fwrite(), fseek.and more.

In C programming, file is a place on your physical disk where information is stored.

Why files are needed?

• When a program is terminated, the entire data is lost. Storing in a file will preserve your data even if

the program terminates.

• If you have to enter a large number of data, it will take a lot of time to enter them all.

However, if you have a file containing all the data, you can easily access the contents of the file

using few commands in C.

• You can easily move your data from one computer to another without any changes.

Types of Files

When dealing with files, there are two types of files you should know about:

1. Text files

2. Binary files

1. Text files

Text files are the normal .txt files that you can easily create using Notepad or any simple text editors.

When you open those files, you'll see all the contents within the file as plain text. You can easily edit or

delete the contents.

Narsimha Reddy Engineering College NRCM

They take minimum effort to maintain, are easily readable, and provide least security and takes bigger

storage space.

2. Binary files

Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold higher amount of data, are not readable easily and provides a better security than text files.

File Operations

In C, you can perform four major operations on the file, either text or binary:

1. Creating a new file

2. Opening an existing file

3. Closing a file

4. Reading from and writing information to a file

Working with files

When working with files, you need to declare a pointer of type file. This declaration is needed for

communication between the file and program.

FILE *fptr;

Opening a file - for creation and edit

Opening a file is performed using the library function in the "stdio.h" header file: fopen().

The syntax for opening a file in standard I/O is:

ptr = fopen("fileopen","mode")

For Example:

fopen("E:\\cprogram\\newprogram.txt","w");

fopen("E:\\cprogram\\oldprogram.bin","rb");

• Let's suppose the file newprogram.txt doesn't exist in the location E:\cprogram. The first function

creates a new file named newprogram.txt and opens it for writing as per the mode 'w'.

The writing mode allows you to create and edit (overwrite) the contents of the file.

• Now let's suppose the second binary file oldprogram.bin exists in the location E:\cprogram. The

second function opens the existing file for reading in binary mode 'rb'.

The reading mode only allows you to read the file, you cannot write into the file.

Opening Modes in Standard I/O

Narsimha Reddy Engineering College NRCM

File

Mode
Meaning of Mode During Inexistence of file

r Open for reading. If the file does not exist, fopen() returns NULL.

rb Open for reading in binary mode. If the file does not exist, fopen() returns NULL.

w Open for writing.
If the file exists, its contents are overwritten. If the file does

not exist, it will be created.

wb Open for writing in binary mode.
If the file exists, its contents are overwritten. If the file does

not exist, it will be created.

a
Open for append. i.e, Data is added

to end of file.
If the file does not exists, it will be created.

ab
Open for append in binary mode. i.e,

Data is added to end of file.
If the file does not exists, it will be created.

r+ Open for both reading and writing. If the file does not exist, fopen() returns NULL.

rb+
Open for both reading and writing in

binary mode.
If the file does not exist, fopen() returns NULL.

w+ Open for both reading and writing.
If the file exists, its contents are overwritten. If the file does

not exist, it will be created.

wb+
Open for both reading and writing in

binary mode.

If the file exists, its contents are overwritten. If the file does

not exist, it will be created.

a+
Open for both reading and

appending.
If the file does not exists, it will be created.

ab+
Open for both reading and appending

in binary mode.
If the file does not exists, it will be created.

Closing a File

The file (both text and binary) should be closed after reading/writing.

Closing a file is performed using library function fclose().

fclose(fptr); //fptr is the file pointer associated with file to be closed.

Reading and writing to a text file

Narsimha Reddy Engineering College NRCM

For reading and writing to a text file, we use the functions fprintf() and fscanf().

They are just the file versions of printf() and scanf(). The only difference is that, fprint and fscanf expects a

pointer to the structure FILE.

Writing to a text file

Example 1: Write to a text file using fprintf()

#include <stdio.h>int main(){

 int num;

 FILE *fptr;

 fptr = fopen("C:\\program.txt","w");

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 printf("Enter num: ");

 scanf("%d",&num);

 fprintf(fptr,"%d",num);

 fclose(fptr);

 return 0;}

This program takes a number from user and stores in the file program.txt.

After you compile and run this program, you can see a text file program.txt created in C drive of your

computer. When you open the file, you can see the integer you entered.

Reading from a text file

Example 2: Read from a text file using fscanf()

Narsimha Reddy Engineering College NRCM

#include <stdio.h>int main(){

 int num;

 FILE *fptr;

 if ((fptr = fopen("C:\\program.txt","r")) == NULL){

 printf("Error! opening file");

 // Program exits if the file pointer returns NULL.

 exit(1);

 }

 fscanf(fptr,"%d", &num);

 printf("Value of n=%d", num);

 fclose(fptr);

 return 0;}

This program reads the integer present in the program.txt file and prints it onto the screen.

If you succesfully created the file from Example 1, running this program will get you the integer you

entered.

Other functions like fgetchar(), fputc() etc. can be used in similar way.

Reading and writing to a binary file

Functions fread() and fwrite() are used for reading from and writing to a file on the disk respectively in case

of binary files.

Writing to a binary file

To write into a binary file, you need to use the function fwrite(). The functions takes four arguments:

Address of data to be written in disk, Size of data to be written in disk, number of such type of data and

pointer to the file where you want to write.

fwrite(address_data,size_data,numbers_data,pointer_to_file);

Narsimha Reddy Engineering College NRCM

Example 3: Writing to a binary file using fwrite()

#include <stdio.h>

struct threeNum{

 int n1, n2, n3;};

int main(){

 int n;

 struct threeNum num;

 FILE *fptr;

 if ((fptr = fopen("C:\\program.bin","wb")) == NULL){

 printf("Error! opening file");

 // Program exits if the file pointer returns NULL.

 exit(1);

 }

 for(n = 1; n < 5; ++n)

 {

 num.n1 = n;

 num.n2 = 5n;

 num.n3 = 5n + 1;

 fwrite(&num, sizeof(struct threeNum), 1, fptr);

 }

 fclose(fptr);

 return 0;}

In this program, you create a new file program.bin in the C drive.

Narsimha Reddy Engineering College NRCM

We declare a structure threeNum with three numbers - n1, n2 and n3, and define it in the main function as

num.

Now, inside the for loop, we store the value into the file using fwrite.

The first parameter takes the address of num and the second parameter takes the size of the structure

threeNum.

Since, we're only inserting one instance of num, the third parameter is 1. And, the last parameter *fptr points

to the file we're storing the data.

Finally, we close the file.

Reading from a binary file

Function fread() also take 4 arguments similar to fwrite() function as above.

fread(address_data,size_data,numbers_data,pointer_to_file);

Example 4: Reading from a binary file using fread()

#include <stdio.h>

struct threeNum{

 int n1, n2, n3;};

int main(){

 int n;

 struct threeNum num;

 FILE *fptr;

 if ((fptr = fopen("C:\\program.bin","rb")) == NULL){

 printf("Error! opening file");

 // Program exits if the file pointer returns NULL.

 exit(1);

 }

 for(n = 1; n < 5; ++n)

Narsimha Reddy Engineering College NRCM

 {

 fread(&num, sizeof(struct threeNum), 1, fptr);

 printf("n1: %d\tn2: %d\tn3: %d", num.n1, num.n2, num.n3);

 }

 fclose(fptr);

 return 0;}

In this program, you read the same file program.bin and loop through the records one by one.

In simple terms, you read one threeNum record of threeNum size from the file pointed by *fptr into the

structure num.

You'll get the same records you inserted in Example 3.

Getting data using fseek()

If you have many records inside a file and need to access a record at a specific position, you need to loop

through all the records before it to get the record.

This will waste a lot of memory and operation time. An easier way to get to the required data can be

achieved using fseek().

As the name suggests, fseek() seeks the cursor to the given record in the file.

Syntax of fseek()

fseek(FILE * stream, long int offset, int whence)

The first parameter stream is the pointer to the file. The second parameter is the position of the record to be

found, and the third parameter specifies the location where the offset starts.

Different Whence in fseek

Whence Meaning

SEKK_SET Starts the offset from the beginning of the file.

SEKK_END Starts the offset from the end of the file.

SEKK_CUR Starts the offset from the current location of the cursor in the file.

Example of fseek()

Narsimha Reddy Engineering College NRCM

#include <stdio.h>

struct threeNum{

 int n1, n2, n3;};

int main(){

 int n;

 struct threeNum num;

 FILE *fptr;

 if ((fptr = fopen("C:\\program.bin","rb")) == NULL){

 printf("Error! opening file");

 // Program exits if the file pointer returns NULL.

 exit(1);

 }

 // Moves the cursor to the end of the file

 fseek(fptr, sizeof(struct threeNum), SEEK_END);

 for(n = 1; n < 5; ++n)

 {

 fread(&num, sizeof(struct threeNum), 1, fptr);

 printf("n1: %d\tn2: %d\tn3: %d", num.n1, num.n2, num.n3);

 }

 fclose(fptr);

 return 0;}

This program will start reading the records from the file program.bin in the reverse order (last to first) and

prints it.

Narsimha Reddy Engineering College NRCM

C Programming Enumeration

In this article, you will learn to work with enumeration (enum). Also, you will learn where enums are

commonly used in C programming.

An enumeration is a user-defined data type that consists of integral constants. To define an enumeration,

keyword enum is used.

enum flag { const1, const2, ..., constN };

Here, name of the enumeration is flag.

And, const1, const2,...., constN are values of type flag.

By default, const1 is 0, const2 is 1 and so on. You can change default values of enum elements during

declaration (if necessary).

// Changing default values of enum

enum suit {

 club = 0,

 diamonds = 10,

 hearts = 20,

 spades = 3,

};

Enumerated Type Declaration

When you create an enumerated type, only blueprint for the variable is created. Here's how you can create

variables of enum type.

enum boolean { false, true };

enum boolean check;

Here, a variable check of type enum boolean is created.

Here is another way to declare same check variable using different syntax.

enum boolean

{

 false, true

} check;

Narsimha Reddy Engineering College NRCM

Example: Enumeration Type

#include <stdio.h>

enum week { sunday, monday, tuesday, wednesday, thursday, friday, saturday };

int main(){

 enum week today;

 today = wednesday;

 printf("Day %d",today+1);

 return 0;}

Output: Day 4

Why enums are used in C programming?

Enum variable takes only one value out of many possible values. Example to demonstrate it,

#include <stdio.h>

enum suit {

 club = 0,

 diamonds = 10,

 hearts = 20,

 spades = 3} card;

int main() {

 card = club;

 printf("Size of enum variable = %d bytes", sizeof(card));

 return 0;}

Output

Size of enum variable = 4 bytes

It's because the size of an integer is 4 bytes.

This makes enum a good choice to work with flags.

You can accomplish the same task using structures. However, working with enums gives you efficiency

along with flexibility.

Narsimha Reddy Engineering College NRCM

How to use enums for flags?

Let us take an example,

enum designFlags {

 ITALICS = 1,

 BOLD = 2,

 UNDERLINE = 4} button;

Suppose you are designing a button for Windows application. You can set flags ITALICS, BOLD and

UNDERLINE to work with text.

There is a reason why all the integral constants are power of 2 in above pseudocode.

// In binary

ITALICS = 00000001

BOLD = 00000010

UNDERLINE = 00000100

Since, the integral constants are power of 2, you can combine two or more flags at once without overlapping

using bitwise OR | operator. This allows you to choose two or more flags at once. For example,

Example program:

#include <stdio.h>

enum designFlags {

 BOLD = 1,

 ITALICS = 2,

 UNDERLINE = 4};

int main() {

 int myDesign = BOLD | UNDERLINE;

 // 00000001

 // | 00000100

Narsimha Reddy Engineering College NRCM

 // ___________

 // 00000101

 printf("%d", myDesign);

 return 0;}

Output

5

When the output is 5, you always know that bold and underline is used.

Also, you can add flag to your requirements.

if (myDesign & ITALICS) {

 // code for italics

}

Here, we have added italics to our design. Note, only code for italics is written inside if statement.

You can accomplish almost anything in C programming without using enumerations. However, they can be

pretty handy in certain situations. That's what differentiates good programmers from great programmers.

String operations (string.h)

language recognizes that strings are terminated by null character and is a different class of array by letting us

input and output the array as a unit. To array out many of the string manipulations,C library supports a large

number of string handling functions that can be used such as:

1. Length (number of characters in the string).

2. Concatentation (adding two are more strings)

3. Comparing two strings.

4. Substring (Extract substring from a given string)

5. Copy(copies one string over another)

strlen():

The strlen() function calculates the length of a given string.

//calculates the length of string before null charcter.

Narsimha Reddy Engineering College NRCM

Example: C strlen() function

#include <stdio.h>

#include <string.h>

int main()

{

 char a[20]="Program";

 char b[20]={'P','r','o','g','r','a','m','\0'};

 char c[20];

 printf("Enter string: ");

 gets(c);

 printf("Length of string a = %d \n",strlen(a));

 //calculates the length of string before null charcter.

 printf("Length of string b = %d \n",strlen(b));

 printf("Length of string c = %d \n",strlen(c));

 return 0;

}

Output

Enter string: String

Length of string a = 7

Length of string b = 7

Length of string c = 6

2.strcpy():

The strcpy() function copies the string pointed by source (including the null character) to the character array

destination.

This function returns character array destination.

The strcpy() function is defined in string.h header file.

Example: C strcpy()

Narsimha Reddy Engineering College NRCM

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[10]= "awesome";

 char str2[10];

 char str3[10];

 strcpy(str2, str1);

 strcpy(str3, "well");

 puts(str2);

 puts(str3);

 return 0;

}

Output

awesome

well

/* strncpy example */

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1[]= "To be or not to be";

 char str2[40];

 char str3[40];

 strncpy (str2, str1);

 /* partial copy (only 5 chars): */

Narsimha Reddy Engineering College NRCM

 strncpy (str3, str2, 5);

 puts (str1);

 puts (str2);

 puts (str3);

 return 0;

}

 Output:

To be or not to be

To be or not to be

To be

strcat():

 The function strcat() concatenates two strings.

In C programming, strcat() concatenates (joins) two strings.

The strcat() function is defined in <string.h> header file

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "hello i am ", str2[] = "sarfaraz";

 //concatenates str1 and str2 and resultant string is stored in str1.

 strcat(str1,str2);//str1=str1+str2;

 puts(str1);

 puts(str2);

 return 0;

}

Output

hello i am sarfaraz

Narsimha Reddy Engineering College NRCM

sarfaraz

/* strncat example */

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1[20];

 char str2[20];

 strcpy (str1,"hello");

 strcpy (str2,"good afternoon");

 strncat (str1, str2, 7);

 puts (str1);

 return 0;

}

Edit & Run

 Output:

hellogood af

strlwr():

strlwr() function converts a given string into lowercase.

Syntax for strlwr() function is given below.

Narsimha Reddy Engineering College NRCM

#include<stdio.h>

#include<string.h>

int main()

{

 char str[] = "MODIFY This String To LOwer";

 printf("%s\n",strlwr (str));

 return 0;

}

Output:

modify this string to lower

strupr() function converts a given string into uppercase.

Syntax for strupr() function is given below.

#include<stdio.h>

#include<string.h>

int main()

{

 char str[] = "i am sarfaraz";

 printf("%s\n",strupr (str));

 return 0;

}

Output:

I AM SARFARAZ

Strrev(): reverse the given string

#include<stdio.h>

#include<string.h>

int main()

{

Narsimha Reddy Engineering College NRCM

 char name[30] = "Hello";

 printf("String before strrev() : %s\n",name);

 printf("String after strrev() : %s",strrev(name));

 return 0;

}

Output:

String before strrev() : Hello

 String after strrev() : olleH

strcmp() function in C compares two given strings and returns zero if they are same.

•If length of string1 < string2, it returns < 0 value. If length of string1 > string2, it returns > 0 value. Syntax

for strcmp() function is given below.

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "fresh" ;

 char str2[] = "refresh" ;

 int i, j, k ;

 i = strcmp (str1, "fresh") ;

 j = strcmp (str1, str2) ;

 k = strcmp (str1, "f") ;

 printf ("\n%d %d %d", i, j, k) ;

 return 0;

}

Output:

0 -1 1

Narsimha Reddy Engineering College NRCM

strcmpi() function in C is same as strcmp() function. But, strcmpi() function is not case sensitive. i.e, “A”

and “a” are treated as same characters. Where as, strcmp() function treats “A” and “a” as different

characters.

#include <stdio.h>

#include <string.h>

int main()

{

 char str1[] = "fresh" ;

 char str2[] = "refresh" ;

 int i, j, k ;

 i = strcmpi (str1, "FRESH") ;

 j = strcmpi (str1, str2) ;

 k = strcmpi (str1, "f") ;

 printf ("\n%d %d %d", i, j, k) ;

 return 0;

}

 Output:

0 -1 1

strchr():

strchr() function returns pointer to the first occurrence of the character in a given string. Syntax for strchr()

function is given below

 #include <stdio.h>

#include <string.h>

int main ()

{

 char string[55] ="This is a string for testing";

 char *p;

 p = strchr (string,'i');

Narsimha Reddy Engineering College NRCM

 printf ("Character i is found at position %d\n",p-string+1);

 printf ("First occurrence of character \"i\" in \"%s\" is \"%s\"",string, p);

 return 0;

}

Output:

Character i is found at position 3

 First occurrence of character “i” in “This is a string for testing” is “is is a string for testing”

#include <stdio.h>

#include <string.h>

int main ()

{

 char string[55] ="This is a string for testing";

 char *p;

 int k = 1;

 p = strchr (string,'i');

 while (p!=NULL)

 {

 printf ("Character i found at position %d\n",p-string+1);

 printf ("Occurrence of character \"i\" : %d \n",k);

 printf ("Occurrence of character \"i\" in \"%s\" is \"%s" \

"\"\n",string, p);

 p=strchr(p+1,'i');

 k++;

 }

 return 0;

Narsimha Reddy Engineering College NRCM

}

 Output:

 Character i is found at position 3

 Occurrence of character “i” : 1

 Occurrence of character “i” in “This is a string for testing” is “is is a string for testing”

 Character i is found at position 6

 Occurrence of character “i” : 2

 Occurrence of character “i” in “This is a string for testing” is “is a string for testing”

 Character i is found at position 14

 Occurrence of character “i” : 3

 Occurrence of character “i” in “This is a string for testing” is “ing for testing”

 Character i is found at position 26

 Occurrence of character “i” : 4

 Occurrence of character “i” in “This is a string for testing” is “ing”

strrchr();

strrchr () last occurrence of given character in a string is found

 #include <stdio.h>

#include <string.h>

int main ()

{

 char string[55] ="Hello world";

 char *p;

 p = strchr (string,'l');

 printf ("Character i is found at position %d\n",p-string+1);

 printf ("last occurrence of character \"l\" in \"%s\" is \"%s\"",string, p);

Narsimha Reddy Engineering College NRCM

 return 0;

}

 Character i is found at position 10

 First occurrence of character “l” in “Hello world” is “ld”

strstr():

strstr() function returns pointer to the first occurrence of the string in a given string.

include <stdio.h>

#include <string.h>

int main ()

{

 char string[55] ="This is a test string for testing";

 char *p;

 p = strstr (string,"test");

 if(p)

 {

 printf("string found\n");

 printf ("First occurrence of string \"test\" in \"%s\" is \"%s\"",string, p);

 }

 else printf("string not found\n");

 return 0;

}

 Output:

string found

 First occurrence of string “test” in “This is a test string for testing” is “test string for testing”

Narsimha Reddy Engineering College NRCM

C – strdup() function

•strdup() function in C duplicates the given string.

#include <stdio.h>

#include <string.h>

int main()

{

 char *p1 = "Raja";

 char *p2;

 p2 = strdup(p1);

 printf("Duplicated string is : %s", p2);

 return 0;

}

Output:

Duplicated string is : Raja

note :strdup allocates memory for the new string on the heap, while using strcpy (or its safer strncpy varient)

I can copy a string to a pre allocated memory on either the heap or the stack. char *strdup(char *pszSrch) ;

strdup will allocate storage the size of the original string

C – strset() function

•strset() function sets all the characters in a string to given character.

#include<stdio.h>

#include<string.h>

int main()

{

 char str[20] = "Test String";

 printf("Original string is : %s", str);

 printf("Test string after strset() : %s",strset(str,'#'));

Narsimha Reddy Engineering College NRCM

 printf("After string set: %s",str);

 return 0;

}

 Output:

Original string is : Test String

Test string after strset() : ###########

C – strnset() function

strnset() function sets portion of characters in a string to given.

strnset() function is non standard function which may not available in standard library in C.

#include<stdio.h>

#include<string.h>

int main()

{

 char str[20] = "Test String";

 printf("Original string is : %s", str);

 printf("Test string after string n set : %s", strnset(str,'#',4));

 printf("After string n set : %s", str);

 return 0;

}

Output:

Original string is : Test String

Test string after string set : #### String

C – strtok() function

strtok() function in C tokenizes/parses the given string using delimiter.

Narsimha Reddy Engineering College NRCM

#include <stdio.h>

#include <string.h>

int main ()

{

 char string[50] ="Test,string1,Test,string2:Test:string3";

 char *p;

 printf ("String \"%s\" is split into tokens:\n",string);

 p = strtok (string,",:");

 while (p!= NULL)

 {

 printf ("%s\n",p);

 p = strtok (NULL, ",:");

 }

 return 0;

}

 Output:

String “Test,string1,Test,string2:Test:string3” is split into tokens:

 Test

 string1

 Test

 string2

 Test

 string3

Introduction to Data Structures

Data Structure is a way of collecting and organising data in such a way that we can perform operations on

these data in an effective way. Data Structures is about rendering data elements in terms of some

relationship, for better organization and storage. For example, we have data player's name "Virat" and age

26. Here "Virat" is of String data type and 26 is of integer data type.

Narsimha Reddy Engineering College NRCM

We can organize this data as a record like Player record. Now we can collect and store player's records in a

file or database as a data structure. For example: "Dhoni" 30, "Gambhir" 31, "Sehwag" 33

In simple language, Data Structures are structures programmed to store ordered data, so that various

operations can be performed on it easily.

Basic types of Data Structures

As we discussed above, anything that can store data can be called as a data strucure, hence Integer, Float,

Boolean, Char etc, all are data structures. They are known as Primitive Data Structures.

Then we also have some complex Data Structures, which are used to store large and connected data. Some

example of Abstract Data Structure are :

• Linked List

• Tree

• Graph

• Stack, Queue etc.

All these data structures allow us to perform different operations on data. We select these data structures

based on which type of operation is required. We will look into these data structures in more details in our

later lessons.

What is Algorithm ?

An algorithm is a finite set of instructions or logic, written in order, to accomplish a certain predefined task.

Algorithm is not the complete code or program, it is just the core logic(solution) of a problem, which can be

expressed either as an informal high level description as pseudocode or using a flowchart.

An algorithm is said to be efficient and fast, if it takes less time to execute and consumes less memory space.

The performance of an algorithm is measured on the basis of following properties :

1. Time Complexity

Narsimha Reddy Engineering College NRCM

2. Space Complexity

Space Complexity

Its the amount of memory space required by the algorithm, during the course of its execution. Space

complexity must be taken seriously for multi-user systems and in situations where limited memory is

available.

An algorithm generally requires space for following components :

• Instruction Space : Its the space required to store the executable version of the program. This space

is fixed, but varies depending upon the number of lines of code in the program.

• Data Space : Its the space required to store all the constants and variables value.

• Environment Space : Its the space required to store the environment information needed to resume

the suspended function.

Time Complexity

Time Complexity is a way to represent the amount of time needed by the program to run to completion. We

will study this in detail.

Time Complexity of Algorithms

Time complexity of an algorithm signifies the total time required by the program to run to completion. The

time complexity of algorithms is most commonly expressed using the big O notation.

Time Complexity is most commonly estimated by counting the number of elementary functions performed

by the algorithm. And since the algorithm's performance may vary with different types of input data, hence

for an algorithm we usually use the worst-case Time complexity of an algorithm because that is the

maximum time taken for any input size.

Calculating Time Complexity

Now lets tap onto the next big topic related to Time complexity, which is How to Calculate Time

Complexity. It becomes very confusing some times, but we will try to explain it in the simplest way.

Now the most common metric for calculating time complexity is Big O notation. This removes all constant

factors so that the running time can be estimated in relation to N, as N approaches infinity. In general you

can think of it like this :

statement;

Above we have a single statement. Its Time Complexity will be Constant. The running time of the

statement will not change in relation to N.

for(i=0; i < N; i++)

Narsimha Reddy Engineering College NRCM

{

 statement;

}

The time complexity for the above algorithm will be Linear. The running time of the loop is directly

proportional to N. When N doubles, so does the running time.

for(i=0; i < N; i++)

{

 for(j=0; j < N;j++)

 {

 statement;

 }

}

This time, the time complexity for the above code will be Quadratic. The running time of the two loops is

proportional to the square of N. When N doubles, the running time increases by N * N.

while(low <= high)

{

 mid = (low + high) / 2;

 if (target < list[mid])

 high = mid - 1;

 else if (target > list[mid])

 low = mid + 1;

 else break;

}

This is an algorithm to break a set of numbers into halves, to search a particular field(we will study this in

detail later). Now, this algorithm will have a Logarithmic Time Complexity. The running time of the

algorithm is proportional to the number of times N can be divided by 2(N is high-low here). This is because

the algorithm divides the working area in half with each iteration.

void quicksort(int list[], int left, int right)

{

 int pivot = partition(list, left, right);

 quicksort(list, left, pivot - 1);

 quicksort(list, pivot + 1, right);

Narsimha Reddy Engineering College NRCM

}

Taking the previous algorithm forward, above we have a small logic of Quick Sort(we will study this in

detail later). Now in Quick Sort, we divide the list into halves every time, but we repeat the iteration N

times(where N is the size of list). Hence time complexity will be N*log(N). The running time consists of N

loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and

logarithmic.

NOTE : In general, doing something with every item in one dimension is linear, doing something with

every item in two dimensions is quadratic, and dividing the working area in half is logarithmic.

Types of Notations for Time Complexity

Now we will discuss and understand the various notations used for Time Complexity.

1. Big Oh denotes "fewer than or the same as"<expression> iterations.

2. Big Omega denotes "more than or the same as"<expression> iterations.

3. Big Theta denotes "the same as"<expression> iterations.

4. Little Oh denotes "fewer than"<expression> iterations.

5. Little Omega denotes "more than"<expression> iterations.

Understanding Notations of Time Complexity with Example

O(expression) is the set of functions that grow slower than or at the same rate as expression.

Omega(expression) is the set of functions that grow faster than or at the same rate as expression.

Theta(expression) consist of all the functions that lie in both O(expression) and Omega(expression).

Suppose you've calculated that an algorithm takes f(n) operations, where,

f(n) = 3*n^2 + 2*n + 4. // n^2 means square of n

Since this polynomial grows at the same rate as n^2, then you could say that the function f lies in the

setTheta(n^2). (It also lies in the sets O(n^2) and Omega(n^2) for the same reason.)

The simplest explanation is, because Theta denotes the same as the expression. Hence, as f(n) grows by a

factor of n^2, the time complexity can be best represented as Theta(n^2).

Introduction to Sorting

Sorting is nothing but storage of data in sorted order, it can be in ascending or descending order. The term

Sorting comes into picture with the term Searching. There are so many things in our real life that we need to

search, like a particular record in database, roll numbers in merit list, a particular telephone number, any

particular page in a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record which is going to be sorted

will contain one key. Based on the key the record will be sorted. For example, suppose we have a record of

students, every such record will have the following data:

• Roll No.

• Name

• Age

• Class

Narsimha Reddy Engineering College NRCM

Here Student roll no. can be taken as key for sorting the records in ascending or descending order. Now

suppose we have to search a Student with roll no. 15, we don't need to search the complete record we will

simply search between the Students with roll no. 10 to 20.

Sorting Efficiency

There are many techniques for sorting. Implementation of particular sorting technique depends upon

situation. Sorting techniques mainly depends on two parameters. First parameter is the execution time of

program, which means time taken for execution of program. Second is the space, which means space taken

by the program.

Types of Sorting Techniques

There are many types of Sorting techniques, differentiated by their efficiency and space requirements.

Following are some sorting techniques which we will be covering in next sections.

1. Bubble Sort

2. Insertion Sort

3. Selection Sort

4. Quick Sort

5. Merge Sort

6. Heap Sort

Bubble Sorting

Bubble Sort is an algorithm which is used to sort N elements that are given in a memory for eg: an Array

withN number of elements. Bubble Sort compares all the element one by one and sort them based on their

values.

It is called Bubble sort, because with each iteration the smaller element in the list bubbles up towards the

first place, just like a water bubble rises up to the water surface.

Sorting takes place by stepping through all the data items one-by-one in pairs and comparing adjacent data

items and swapping each pair that is out of order.

Sorting using Bubble Sort Algorithm

Let's consider an array with values {5, 1, 6, 2, 4, 3}

Narsimha Reddy Engineering College NRCM

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, temp;

for(i=0; i<6, i++)

{

 for(j=0; j<6-i-1; j++)

 {

 if(a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

}

//now you can print the sorted array after this

Above is the algorithm, to sort an array using Bubble Sort. Although the above logic will sort and unsorted

array, still the above algorithm isn't efficient and can be enhanced further. Because as per the above logic,

the for loop will keep going for six iterations even if the array gets sorted after the second iteration.

Hence we can insert a flag and can keep checking whether swapping of elements is taking place or not. If no

swapping is taking place that means the array is sorted and wew can jump out of the for loop.

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, temp;

for(i=0; i<6, i++)

{

 for(j=0; j<6-i-1; j++)

 {

 int flag = 0; //taking a flag variable

 if(a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 flag = 1; //setting flag as 1, if swapping occurs

 }

 }

 if(!flag) //breaking out of for loop if no swapping takes place

 {

 break;

Narsimha Reddy Engineering College NRCM

 }

}

In the above code, if in a complete single cycle of j iteration(inner for loop), no swapping takes place, and

flag remains 0, then we will break out of the for loops, because the array has already been sorted.

Complexity Analysis of Bubble Sorting

In Bubble Sort, n-1 comparisons will be done in 1st pass, n-2 in 2nd pass, n-3 in 3rd pass and so on. So the

total number of comparisons will be

(n-1)+(n-2)+(n-3)+.....+3+2+1

Sum = n(n-1)/2

i.e O(n2)

Hence the complexity of Bubble Sort is O(n2).

The main advantage of Bubble Sort is the simplicity of the algorithm.Space complexity for Bubble Sort

is O(1), because only single additional memory space is required for temp variable

Best-case Time Complexity will be O(n), it is when the list is already sorted.

Insertion Sorting

It is a simple Sorting algorithm which sorts the array by shifting elements one by one. Following are some of

the important characteristics of Insertion Sort.

1. It has one of the simplest implementation

2. It is efficient for smaller data sets, but very inefficient for larger lists.

3. Insertion Sort is adaptive, that means it reduces its total number of steps if given a partially sorted list,

hence it increases its efficiency.

4. It is better than Selection Sort and Bubble Sort algorithms.

5. Its space complexity is less, like Bubble Sorting, inerstion sort also requires a single additional

memory space.

6. It is Stable, as it does not change the relative order of elements with equal keys

How Insertion Sorting Works

Narsimha Reddy Engineering College NRCM

Sorting using Insertion Sort Algorithm

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, key;

for(i=1; i<6; i++)

{

 key = a[i];

 j = i-1;

 while(j>=0 && key < a[j])

 {

 a[j+1] = a[j];

 j--;

 }

 a[j+1] = key;

}

Now lets, understand the above simple insertion sort algorithm. We took an array with 6 integers. We took a

variable key, in which we put each element of the array, in each pass, starting from the second element, that

is a[1].

Then using the while loop, we iterate, until j becomes equal to zero or we find an element which is greater

than key, and then we insert the key at that position.

In the above array, first we pick 1 as key, we compare it with 5(element before 1), 1 is smaller than 5, we

shift 1 before 5. Then we pick 6, and compare it with 5 and 1, no shifting this time. Then 2 becomes the key

and is compared with, 6 and 5, and then 2 is placed after 1. And this goes on, until complete array gets

sorted.

Complexity Analysis of Insertion Sorting

Worst Case Time Complexity : O(n2)

Best Case Time Complexity : O(n)

Average Time Complexity : O(n2)

Space Complexity : O(1)Selection Sorting

Selection sorting is conceptually the most simplest sorting algorithm. This algorithm first finds the smallest

element in the array and exchanges it with the element in the first position, then find the second smallest

Narsimha Reddy Engineering College NRCM

element and exchange it with the element in the second position, and continues in this way until the entire

array is sorted.

How Selection Sorting Works

In the first pass, the smallest element found is 1, so it is placed at the first position, then leaving first element,

smallest element is searched from the rest of the elements, 3 is the smallest, so it is then placed at the second

position. Then we leave 1 nad 3, from the rest of the elements, we search for the smallest and put it at third

position and keep doing this, until array is sorted.

Sorting using Selection Sort Algorithm

void selectionSort(int a[], int size)

{

 int i, j, min, temp;

 for(i=0; i < size-1; i++)

 {

 min = i; //setting min as i

 for(j=i+1; j < size; j++)

 {

 if(a[j] < a[min]) //if element at j is less than element at min position

 {

 min = j; //then set min as j

 }

 }

 temp = a[i];

 a[i] = a[min];

 a[min] = temp;

 }

}

Complexity Analysis of Selection Sorting

Worst Case Time Complexity : O(n2)

Best Case Time Complexity : O(n2)

Narsimha Reddy Engineering College NRCM

Average Time Complexity : O(n2)

Space Complexity : O(1)

Quick Sort Algorithm

Quick Sort, as the name suggests, sorts any list very quickly. Quick sort is not stable search, but it is very

fast and requires very less aditional space. It is based on the rule of Divide and Conquer(also

called partition-exchange sort). This algorithm divides the list into three main parts :

1. Elements less than the Pivot element

2. Pivot element

3. Elements greater than the pivot element

In the list of elements, mentioned in below example, we have taken 25 as pivot. So after the first pass, the

list will be changed like this.

6 8 17 14 25 63 37 52

Hnece after the first pass, pivot will be set at its position, with all the elements smaller to it on its left and all

the elements larger than it on the right. Now 6 8 17 14 and 63 37 52 are considered as two separate lists, and

same logic is applied on them, and we keep doing this until the complete list is sorted.

How Quick Sorting Works

Sorting using Quick Sort Algorithm

/* a[] is the array, p is starting index, that is 0,

and r is the last index of array. */

void quicksort(int a[], int p, int r)

{

 if(p < r)

 {

 int q;

Narsimha Reddy Engineering College NRCM

 q = partition(a, p, r);

 quicksort(a, p, q);

 quicksort(a, q+1, r);

 }

}

int partition(int a[], int p, int r)

{

 int i, j, pivot, temp;

 pivot = a[p];

 i = p;

 j = r;

 while(1)

 {

 while(a[i] < pivot && a[i] != pivot)

 i++;

 while(a[j] > pivot && a[j] != pivot)

 j--;

 if(i < j)

 {

 temp = a[i];

 a[i] = a[j];

 a[j] = temp;

 }

 else

 {

 return j;

 }

 }

}

Complexity Analysis of Quick Sort

Worst Case Time Complexity : O(n2)

Best Case Time Complexity : O(n log n)

Average Time Complexity : O(n log n)

Space Complexity : O(n log n)

Narsimha Reddy Engineering College NRCM

• Space required by quick sort is very less, only O(n log n) additional space is required.

• Quick sort is not a stable sorting technique, so it might change the occurence of two similar elements

in the list while sorting.

Merge Sort Algorithm

Merge Sort follows the rule of Divide and Conquer. But it doesn't divides the list into two halves. In merge

sort the unsorted list is divided into N sublists, each having one element, because a list of one element is

considered sorted. Then, it repeatedly merge these sublists, to produce new sorted sublists, and at lasts one

sorted list is produced.

Merge Sort is quite fast, and has a time complexity of O(n log n). It is also a stable sort, which means the

"equal" elements are ordered in the same order in the sorted list.

How Merge Sort Works

Like we can see in the above example, merge sort first breaks the unsorted list into sorted sublists, and then

keep merging these sublists, to finlly get the complete sorted list.

Sorting using Merge Sort Algorithm

/* a[] is the array, p is starting index, that is 0,

and r is the last index of array. */

Lets take a[5] = {32, 45, 67, 2, 7} as the array to be sorted.

Narsimha Reddy Engineering College NRCM

void mergesort(int a[], int p, int r)

{

 int q;

 if(p < r)

 {

 q = floor((p+r) / 2);

 mergesort(a, p, q);

 mergesort(a, q+1, r);

 merge(a, p, q, r);

 }

}

void merge(int a[], int p, int q, int r)

{

 int b[5]; //same size of a[]

 int i, j, k;

 k = 0;

 i = p;

 j = q+1;

 while(i <= q && j <= r)

 {

 if(a[i] < a[j])

 {

 b[k++] = a[i++]; // same as b[k]=a[i]; k++; i++;

 }

 else

 {

 b[k++] = a[j++];

 }

 }

 while(i <= q)

 {

 b[k++] = a[i++];

 }

 while(j <= r)

Narsimha Reddy Engineering College NRCM

 {

 b[k++] = a[j++];

 }

 for(i=r; i >= p; i--)

 {

 a[i] = b[--k]; // copying back the sorted list to a[]

 }

}

Complexity Analysis of Merge Sort

Worst Case Time Complexity : O(n log n)

Best Case Time Complexity : O(n log n)

Average Time Complexity : O(n log n)

Space Complexity : O(n)

• Time complexity of Merge Sort is O(n Log n) in all 3 cases (worst, average and best) as merge sort

always divides the array in two halves and take linear time to merge two halves.

• It requires equal amount of additional space as the unsorted list. Hence its not at all recommended for

searching large unsorted lists.

• It is the best Sorting technique for sorting Linked Lists.

Heap Sort Algorithm

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case scenarios.

Heap sort algorithm is divided into two basic parts :

• Creating a Heap of the unsorted list.

• Then a sorted array is created by repeatedly removing the largest/smallest element from the heap,

and inserting it into the array. The heap is reconstructed after each removal.

What is a Heap ?

Heap is a special tree-based data structure, that satisfies the following special heap properties :

1. Shape Property : Heap data structure is always a Complete Binary Tree, which means all levels of

the tree are fully filled.

Narsimha Reddy Engineering College NRCM

2. Heap Property : All nodes are either [greater than or equal to] or [less than or equal to] each of its

children. If the parent nodes are greater than their children, heap is called a Max-Heap, and if the parent

nodes are smalled than their child nodes, heap is called Min-Heap.

How Heap Sort Works

Initially on receiving an unsorted list, the first step in heap sort is to create a Heap data structure(Max-Heap

or Min-Heap). Once heap is built, the first element of the Heap is either largest or smallest(depending upon

Max-Heap or Min-Heap), so we put the first element of the heap in our array. Then we again make heap

using the remaining elements, to again pick the first element of the heap and put it into the array. We keep

on doing the same repeatedly untill we have the complete sorted list in our array.

In the below algorithm, initially heapsort() function is called, which calls buildheap() to build heap, which

inturn uses satisfyheap() to build the heap.

Narsimha Reddy Engineering College NRCM

Sorting using Heap Sort Algorithm

/* Below program is written in C++ language */

void heapsort(int[], int);

void buildheap(int [], int);

void satisfyheap(int [], int, int);

void main()

{

 int a[10], i, size;

 cout <<"Enter size of list"; // less than 10, because max size of array is 10

 cin >> size;

 cout <<"Enter"<< size <<"elements";

 for(i=0; i < size; i++)

 {

 cin >> a[i];

 }

 heapsort(a, size);

 getch();

}

void heapsort(int a[], int length)

{

 buildheap(a, length);

 int heapsize, i, temp;

 heapsize = length - 1;

 for(i=heapsize; i >= 0; i--)

 {

 temp = a[0];

 a[0] = a[heapsize];

 a[heapsize] = temp;

 heapsize--;

 satisfyheap(a, 0, heapsize);

 }

 for(i=0; i < length; i++)

 {

 cout <<"\t"<< a[i];

Narsimha Reddy Engineering College NRCM

 }

}

void buildheap(int a[], int length)

{

 int i, heapsize;

 heapsize = length - 1;

 for(i=(length/2); i >= 0; i--)

 {

 satisfyheap(a, i, heapsize);

 }

}

void satisfyheap(int a[], int i, int heapsize)

{

 int l, r, largest, temp;

 l = 2*i;

 r = 2*i + 1;

 if(l <= heapsize && a[l] > a[i])

 {

 largest = l;

 }

 else

 {

 largest = i;

 }

 if(r <= heapsize && a[r] > a[largest])

 {

 largest = r;

 }

 if(largest != i)

 {

 temp = a[i];

 a[i] = a[largest];

 a[largest] = temp;

 satisfyheap(a, largest, heapsize);

 }

Narsimha Reddy Engineering College NRCM

}

Complexity Analysis of Heap Sort

Worst Case Time Complexity : O(n log n)

Best Case Time Complexity : O(n log n)

Average Time Complexity : O(n log n)

Space Complexity : O(n)

• Heap sort is not a Stable sort, and requires a constant space for sorting a list.

• Heap Sort is very fast and is widely used for sorting.

Searching Algorithms on Array

Before studying searching algorithms on array we should know what is an algorithm?

An algorithm is a step-by-step procedure or method for solving a problem by a computer in a given number

of steps. The steps of an algorithm may include repetition depending upon the problem for which the

algorithm is being developed. The algorithm is written in human readable and understandable form. To

search an element in a given array, it can be done in two ways Linear search and Binary search.

Linear Search

A linear search is the basic and simple search algorithm. A linear search searches an element or value from

an array till the desired element or value is not found and it searches in a sequence order. It compares the

element with all the other elements given in the list and if the element is matched it returns the value index

else it return -1. Linear Search is applied on the unsorted or unordered list when there are fewer elements in

a list.

Example with Implementation

To search the element 5 it will go step by step in a sequence order.

function findIndex(values, target)

 {

 for(var i = 0; i < values.length; ++i)

 {

Narsimha Reddy Engineering College NRCM

 if (values[i] == target)

 {

 return i;

 }

 }

 return -1;

 }

//call the function findIndex with array and number to be searched

findIndex([8 , 2 , 6 , 3 , 5] , 5) ;

Binary Search

Binary Search is applied on the sorted array or list. In binary search, we first compare the value with the

elements in the middle position of the array. If the value is matched, then we return the value. If the value is

less than the middle element, then it must lie in the lower half of the array and if it's greater than the element

then it must lie in the upper half of the array. We repeat this procedure on the lower (or upper) half of the

array. Binary Search is useful when there are large numbers of elements in an array.

Example with Implementation

To search an element 13 from the sorted array or list.

function findIndex(values, target)

{

 return binarySearch(values, target, 0, values.length - 1);

};

Narsimha Reddy Engineering College NRCM

function binarySearch(values, target, start, end) {

 if (start > end) { return -1; } //does not exist

 var middle = Math.floor((start + end) / 2);

 var value = values[middle];

 if (value > target) { return binarySearch(values, target, start, middle-1); }

 if (value < target) { return binarySearch(values, target, middle+1, end); }

 return middle; //found!

}

findIndex([2, 4, 7, 9, 13, 15], 13);

In the above program logic, we are first comparing the middle number of the list, with the target, if it

matches we return. If it doesn't, we see whether the middle number is greater than or smaller than the target.

If the Middle number is greater than the Target, we start the binary search again, but this time on the left half

of the list, that is from the start of the list to the middle, not beyond that.

If the Middle number is smaller than the Target, we start the binary search again, but on the right half of the

list, that is from the middle of the list to the end of the list.

Stacks

Stack is an abstract data type with a bounded(predefined) capacity. It is a simple data structure that allows

adding and removing elements in a particular order. Every time an element is added, it goes on the top of the

stack, the only element that can be removed is the element that was at the top of the stack, just like a pile of

objects.

Basic features of Stack

Narsimha Reddy Engineering College NRCM

1. Stack is an ordered list of similar data type.

2. Stack is a LIFO structure. (Last in First out).

3. push() function is used to insert new elements into the Stack and pop() is used to delete an element

from the stack. Both insertion and deletion are allowed at only one end of Stack called Top.

4. Stack is said to be in Overflow state when it is completely full and is said to be in Underflow state if

it is completely empty.

Applications of Stack

The simplest application of a stack is to reverse a word. You push a given word to stack - letter by letter -

and then pop letters from the stack.

There are other uses also like : Parsing, Expression Conversion(Infix to Postfix, Postfix to Prefix etc) and

many more.

Implementation of Stack

Stack can be easily implemented using an Array or a Linked List. Arrays are quick, but are limited in size

and Linked List requires overhead to allocate, link, unlink, and deallocate, but is not limited in size. Here we

will implement Stack using array.

/* Below program is written in C++ language */

Class Stack

{

 int top;

 public:

 int a[10]; //Maximum size of Stack

 Stack()

Narsimha Reddy Engineering College NRCM

 {

 top = -1;

 }

};

void Stack::push(int x)

{

 if(top >= 10)

 {

 cout <<"Stack Overflow";

 }

 else

 {

 a[++top] = x;

 cout <<"Element Inserted";

 }

}

int Stack::pop()

{

 if(top < 0)

 {

 cout <<"Stack Underflow";

 return 0;

 }

 else

 {

 int d = a[--top];

 return d;

 }

}

void Stack::isEmpty()

{

 if(top < 0)

 {

 cout <<"Stack is empty";

Narsimha Reddy Engineering College NRCM

 }

 else

 {

 cout <<"Stack is not empty";

 }

}

Position of Top Status of Stack

-1 Stack is Empty

0 Only one element in Stack

N-1 Stack is Full

N Overflow state of Stack

Analysis of Stacks

Below mentioned are the time complexities for various operations that can be performed on the Stack data

structure.

• Push Operation : O(1)

• Pop Operation : O(1)

• Top Operation : O(1)

• Search Operation : O(n)

Queue Data Structures

Queue is also an abstract data type or a linear data structure, in which the first element is inserted from one

end called REAR(also called tail), and the deletion of exisiting element takes place from the other end

called as FRONT(also called head). This makes queue as FIFO data structure, which means that element

inserted first will also be removed first.

The process to add an element into queue is called Enqueue and the process of removal of an element from

queue is called Dequeue.

Narsimha Reddy Engineering College NRCM

Basic features of Queue

1. Like Stack, Queue is also an ordered list of elements of similar data types.

2. Queue is a FIFO(First in First Out) structure.

3. Once a new element is inserted into the Queue, all the elements inserted before the new element in

the queue must be removed, to remove the new element.

4. peek() function is oftenly used to return the value of first element without dequeuing it.

Applications of Queue

Queue, as the name suggests is used whenever we need to have any group of objects in an order in which the

first one coming in, also gets out first while the others wait for there turn, like in the following scenarios :

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until

a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order as they

arrive, First come first served.

Implementation of Queue

Queue can be implemented using an Array, Stack or Linked List. The easiest way of implementing a queue

is by using an Array. Initially the head(FRONT) and the tail(REAR) of the queue points at the first index of

the array (starting the index of array from 0). As we add elements to the queue, the tail keeps on moving

ahead, always pointing to the position where the next element will be inserted, while the head remains at the

first index.

Narsimha Reddy Engineering College NRCM

When we remove element from Queue, we can follow two possible approaches (mentioned [A] and [B] in

above diagram). In [A] approach, we remove the element at head position, and then one by one move all the

other elements on position forward. In approach [B] we remove the element from head position and then

move head to the next position.

In approach [A] there is an overhead of shifting the elements one position forward every time we remove the

first element. In approach [B] there is no such overhead, but whener we move head one position ahead, after

removal of first element, the size on Queue is reduced by one space each time.

/* Below program is wtitten in C++ language */

#define SIZE 100

class Queue

{

 int a[100];

 int rear; //same as tail

 int front; //same as head

 public:

Narsimha Reddy Engineering College NRCM

 Queue()

 {

 rear = front = -1;

 }

 void enqueue(int x); //declaring enqueue, dequeue and display functions

 int dequeue();

 void display();

}

void Queue :: enqueue(int x)

{

 if(rear = SIZE-1)

 {

 cout <<"Queue is full";

 }

 else

 {

 a[++rear] = x;

 }

}

int queue :: dequeue()

{

 return a[++front]; //following approach [B], explained above

}

void queue :: display()

{

 int i;

 for(i = front; i <= rear; i++)

 {

 cout << a[i];

 }

}

To implement approach [A], you simply need to change the dequeue method, and include a for loop which

will shift all the remaining elements one position.

return a[0]; //returning first element

for (i = 0; i < tail-1; i++) //shifting all other elements

{

 a[i]= a[i+1];

Narsimha Reddy Engineering College NRCM

 tail--;

}

Analysis of Queue

• Enqueue : O(1)

• Dequeue : O(1)

• Size : O(1)

Queue Data Structure using Stack

A Queue is defined by its property of FIFO, which means First in First Out, i.e the element which is added

first is taken out first. Hence we can implement a Queue using Stack for storage instead of array.

For performing enqueue we require only one stack as we can directly push data into stack, but to

performdequeue we will require two Stacks, because we need to follow queue's FIFO property and if we

directly popany data element out of Stack, it will follow LIFO approach(Last in First Out).

Implementation of Queue using Stacks

In all we will require two Stacks, we will call them InStack and OutStack.

class Queue {

 public:

 Stack S1, S2;

//defining methods

 void enqueue(int x);

 int dequeue();

}

We know that, Stack is a data structure, in which data can be added using push() method and data can be

deleted using pop() method. To learn about Stack, follow the link : Stack Data Structure

Adding Data to Queue

As our Queue has Stack for data storage in place of arrays, hence we will be adding data to Stack, which can

be done using the push() method, hence :

void Queue :: enqueue(int x) {

 S1.push(x);

}

Removing Data from Queue

http://www.studytonight.com/data-structures/stack-data-structure

Narsimha Reddy Engineering College NRCM

When we say remove data from Queue, it always means taking out the First element first and so on, as we

have to follow the FIFO approach. But if we simply perform S1.pop() in our dequeue method, then it will

remove the Last element first. So what to do now?

int Queue :: dequeue() {

 while(S1.isEmpty()) {

 x = S1.pop();

 S2.push();

 }

//removing the element

 x = S2.pop();

 while(!S2.isEmpty()) {

 x = S2.pop();

 S1.push(x);

 }

Narsimha Reddy Engineering College NRCM

 return x;

}

Introduction to Linked Lists

Linked List is a linear data structure and it is very common data structure which consists of group of nodes

in a sequence which is divided in two parts. Each node consists of its own data and the address of the next

node and forms a chain. Linked Lists are used to create trees and graphs.

Advantages of Linked Lists

• They are a dynamic in nature which allocates the memory when required.

• Insertion and deletion operations can be easily implemented.

• Stacks and queues can be easily executed.

• Linked List reduces the access time.

Disadvantages of Linked Lists

• The memory is wasted as pointers require extra memory for storage.

• No element can be accessed randomly; it has to access each node sequentially.

• Reverse Traversing is difficult in linked list.

Applications of Linked Lists

• Linked lists are used to implement stacks, queues, graphs, etc.

• Linked lists let you insert elements at the beginning and end of the list.

• In Linked Lists we don’t need to know the size in advance.

Types of Linked Lists

• Singly Linked List : Singly linked lists contain nodes which have a data part as well as an address

part i.e. next, which points to the next node in sequence of nodes. The operations we can perform on

singly linked lists are insertion, deletion and traversal.

Narsimha Reddy Engineering College NRCM

• Doubly Linked List : In a doubly linked list, each node contains two links the first link points to the

previous node and the next link points to the next node in the sequence.

• Circular Linked List : In the circular linked list the last node of the list contains the address of the

first node and forms a circular chain.

Linear Linked List

The element can be inserted in linked list in 2 ways :

• Insertion at beginning of the list.

• Insertion at the end of the list.

We will also be adding some more useful methods like :

• Checking whether Linked List is empty or not.

• Searching any element in the Linked List

• Deleting a particular Node from the List

Before inserting the node in the list we will create a class Node. Like shown below :

Narsimha Reddy Engineering College NRCM

class Node {

 public:

 int data;

//pointer to the next node

 node* next;

node() {

 data = 0;

 next = NULL;

 }

node(int x) {

 data = x;

 next = NULL;

 }

}

We can also make the properties data and next as private, in that case we will need to add the getter and

setter methods to access them. You can add the getters and setter like this :

int getData() {

 return data;

}

void setData(int x) {

 this.data = x;

}

node* getNext() {

 return next;

}

void setNext(node *n) {

 this.next = n;

}

Node class basically creates a node for the data which you enter to be included into Linked List. Once the

node is created, we use various functions to fit in that node into the Linked List.

Linked List class

As we are following the complete OOPS methodology, hence we will create a separate class for Linked List,

which will have all its methods. Following will be the Linked List class :

class LinkedList {

 public:

 node *head;

//declaring the functions

Narsimha Reddy Engineering College NRCM

//function to add Node at front

 int addAtFront(node *n);

//function to check whether Linked list is empty

 int isEmpty();

//function to add Node at the End of list

 int addAtEnd(node *n);

//function to search a value

 node* search(int k);

//function to delete any Node

 node* deleteNode(int x);

LinkedList() {

 head = NULL;

 }

}

Insertion at the Beginning

Steps to insert a Node at beginning :

1. The first Node is the Head for any Linked List.

2. When a new Linked List is instantiated, it just has the Head, which is Null.

3. Else, the Head holds the pointer to the first Node of the List.

4. When we want to add any Node at the front, we must make the head point to it.

5. And the Next pointer of the newly added Node, must point to the previous Head, whether it be

NULL(in case of new List) or the pointer to the first Node of the List.

6. The previous Head Node is now the second Node of Linked List, because the new Node is added at

the front.

int LinkedList :: addAtFront(node *n) {

 int i = 0;

//making the next of the new Node point to Head

 n->next = head;

//making the new Node as Head

 head = n;

 i++;

//returning the position where Node is added

 return i;

}

Inserting at the End

Narsimha Reddy Engineering College NRCM

Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.

2. If the Linked List is not empty then we find the last node, and make it' next to the new Node, hence

making the new node the last Node.

int LinkedList :: addAtEnd(node *n) {

//If list is empty

 if(head == NULL) {

//making the new Node as Head

 head = n;

//making the next pointe of the new Node as Null

 n->next = NULL;

 }

 else {

//getting the last node

 node *n2 = getLastNode();

 n2->next = n;

 } }

node* LinkedList :: getLastNode() {

//creating a pointer pointing to Head

 node* ptr = head;

//Iterating over the list till the node whose Next pointer points to null

//Return that node, because that will be the last node.

 while(ptr->next!=NULL) {

//if Next is not Null, take the pointer one step forward

 ptr = ptr->next;

 }

 return ptr;

}

Searching for an Element in the List

In searhing we do not have to do much, we just need to traverse like we did while getting the last node, in

this case we will also compare the data of the Node. If we get the Node with the same data, we will return it,

otherwise we will make our pointer point the next Node, and so on.

node* LinkedList :: search(int x) {

 node *ptr = head;

 while(ptr != NULL && ptr->data != x) {

//until we reach the end or we find a Node with data x, we keep moving

 ptr = ptr->next;

Narsimha Reddy Engineering College NRCM

 }

 return ptr;

}

Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which we want to delete

and then we delete it. In our approach, we will define a method which will take the data to be deleted as

argument, will use the search method to locate it and will then remove the Node from the List.

To remove any Node from the list, we need to do the following :

• If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to the

next element from the Node to be deleted.

• If the Node is in the middle somewhere, then find the Node before it, and make the Node before it

point to the Node next to it.

node* LinkedList :: deleteNode(int x) {

//searching the Node with data x

 node *n = search(x);

 node *ptr = head;

 if(ptr == n) {

 ptr->next = n->next;

 return n;

 }

 else {

 while(ptr->next != n) {

 ptr = ptr->next;

 }

 ptr->next = n->next;

 return n;

 }

}

Checking whether the List is empty or not

We just need to check whether the Head of the List is NULL or not.

int LinkedList :: isEmpty() {

 if(head == NULL) {

 return 1;

 }

 else { return 0; }

Narsimha Reddy Engineering College NRCM

}

Now you know a lot about how to handle List, how to traverse it, how to search an element. You can

yourself try to write new methods around the List.

If you are still figuring out, how to call all these methods, then below is how your main() method will look

like. As we have followed OOP standards, we will create the objects of LinkedList class to initialize our

List and then we will create objects of Node class whenever we want to add any new node to the List.

int main() {

 LinkedList L;

//We will ask value from user, read the value and add the value to our Node

 int x;

 cout <<"Please enter an integer value : ";

 cin >> x;

 Node *n1;

//Creating a new node with data as x

 n1 = new Node(x);

//Adding the node to the list

 L.addAtFront(n1);

}

Similarly you can call any of the functions of the LinkedList class, add as many Nodes you want to your

List.

Circular Linked List

Circular Linked List is little more complicated linked data structure. In the circular linked list we can insert

elements anywhere in the list whereas in the array we cannot insert element anywhere in the list because it is

in the contiguous memory. In the circular linked list the previous element stores the address of the next

element and the last element stores the address of the starting element. The elements points to each other in a

circular way which forms a circular chain. The circular linked list has a dynamic size which means the

memory can be allocated when it is required.

Application of Circular Linked List

• The real life application where the circular linked list is used is our Personal Computers, where

multiple applications are running. All the running applications are kept in a circular linked list and the OS

gives a fixed time slot to all for running. The Operating System keeps on iterating over the linked list

until all the applications are completed.

Narsimha Reddy Engineering College NRCM

• Another example can be Multiplayer games. All the Players are kept in a Circular Linked List and

the pointer keeps on moving forward as a player's chance ends.

• Circular Linked List can also be used to create Circular Queue. In a Queue we have to keep two

pointers, FRONT and REAR in memory all the time, where as in Circular Linked List, only one pointer

is required.

Implementing Circular Linked List

Implementing a circular linked list is very easy and almost similar to linear linked list implementation, with

the only difference being that, in circular linked list the last Node will have it's next point to the Head of the

List. In Linear linked list the last Node simply holds NULL in it's next pointer.

So this will be oue Node class, as we have already studied in the lesson, it will be used to form the List.

class Node {

 public:

 int data;

//pointer to the next node

 node* next;

node() {

 data = 0;

 next = NULL;

 }

node(int x) {

 data = x;

 next = NULL;

 }

}

Circular Linked List

Circular Linked List class will be almost same as the Linked List class that we studied in the previous lesson,

with a few difference in the implementation of class methods.

class CircularLinkedList {

 public:

 node *head;

//declaring the functions

Narsimha Reddy Engineering College NRCM

//function to add Node at front

 int addAtFront(node *n);

//function to check whether Linked list is empty

 int isEmpty();

//function to add Node at the End of list

 int addAtEnd(node *n);

//function to search a value

 node* search(int k);

//function to delete any Node

 node* deleteNode(int x);

CircularLinkedList() {

 head = NULL;

 }

}

Insertion at the Beginning

Steps to insert a Node at beginning :

1. The first Node is the Head for any Linked List.

2. When a new Linked List is instantiated, it just has the Head, which is Null.

3. Else, the Head holds the pointer to the fisrt Node of the List.

4. When we want to add any Node at the front, we must make the head point to it.

5. And the Next pointer of the newly added Node, must point to the previous Head, whether it be

NULL(in case of new List) or the pointer to the first Node of the List.

6. The previous Head Node is now the second Node of Linked List, because the new Node is added at

the front.

int CircularLinkedList :: addAtFront(node *n) {

 int i = 0;

/* If the list is empty */

 if(head == NULL) {

 n->next = head;

//making the new Node as Head

 head = n;

 i++;

 }

 else {

 n->next = head;

//get the Last Node and make its next point to new Node

Narsimha Reddy Engineering College NRCM

 Node* last = getLastNode();

 last->next = n;

//also make the head point to the new first Node

 head = n;

 i++;

 }

//returning the position where Node is added

 return i;

}

Insertion at the End

Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.

2. If the Linked List is not empty then we find the last node, and make it' next to the new Node, and

make the next of the Newly added Node point to the Head of the List.

int CircularLinkedList :: addAtEnd(node *n) {

//If list is empty

 if(head == NULL) {

//making the new Node as Head

 head = n;

//making the next pointer of the new Node as Null

 n->next = NULL;

 }

 else {

//getting the last node

 node *last = getLastNode();

 last->next = n;

//making the next pointer of new node point to head

 n->next = head;

 }

}

Searching for an Element in the List

In searhing we do not have to do much, we just need to traverse like we did while getting the last node, in

this case we will also compare the data of the Node. If we get the Node with the same data, we will return it,

otherwise we will make our pointer point the next Node, and so on.

node* CircularLinkedList :: search(int x) {

 node *ptr = head;

Narsimha Reddy Engineering College NRCM

 while(ptr != NULL && ptr->data != x) {

 ptr = ptr->next;

 }

 return ptr;

}

Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which we want to delete

and then we delete it. In our approach, we will define a method which will take the data to be deleted as

argument, will use the search method to locate it and will then remove the Node from the List.

To remove any Node from the list, we need to do the following :

• If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to the

next element from the Node to be deleted. And update the next pointer of the Last Node as well.

• If the Node is in the middle somewhere, then find the Node before it, and make the Node before it

point to the Node next to it.

• If the Node is at the end, then remove it and make the new last node point to the head.

node* CircularLinkedList :: deleteNode(int x) {

//searching the Node with data x

 node *n = search(x);

 node *ptr = head;

if(ptr == NULL) {

 cout <<"List is empty";

 return NULL;

 } else if(ptr == n) {

 ptr->next = n->next;

 return n;

 } else {

 while(ptr->next != n) {

 ptr = ptr->next;

 }

 ptr->next = n->next;

 return n;

 }

}

 Prof. Srilakshmi Cherukuri working as an AssistantProfessor &HoD in the CSE
(AI&ML) Department at NarsimhaReddy Engineering College, Hyderabad. She
secured a Master of Technology in CSE. She is pursuing a Ph.D., at GITAM
University, Hyderabad, India. She has been in the field of teaching profession for
more than 18 years. She has presented more than 25 papers in national and
International Journals, Conferences, and Symposiums. Her main areas of interest
include DeepLearning andImageProcessing. Throughout her career, Ch Srilakshmi
has been passionate about teaching and sharing her knowledge with others. She
has conducted numerous workshops and seminars on programming languages,
with a particular focus on C programming.

 CH SRILAXMI
(Ph.D.), M.Tech

