*'. NARSIMHA REDDY ENGINEERING COLLEGE A e

N—Lm UGC AUTONOMOUS INSTITUTION Approved by AICTE
vourrotstosuccess.. Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India Permanently affiliated to JNTUH

LEARN C
PROGRAMMING

A S—

- ———
N S’

- —
- —_—
- —_—

CH SRILAXMI

Author Profile:

Prof. Srilakshmi Cherukuri working as an Assistant Professor & HoD in
the CSE(Al &ML)Department at Narsimha Reddy Engineering College,
Hyderabad. She secured a Master of Technologyin CSE. She is persuing
a Ph.D., in GITAM University,Hyderabad, India. She is in the fieldof
teachingprofession for more than 18 years. She has presented more
than 25 papers in National andinternational Journals, Conference and
Symposiums. Her main area of interest includes Deeplearningand
Image Processing. Throughout her career, Ch Srilakahmi has been
passionate about teachingandsharingherknowledge with others. She
has conducted numerous workshops and seminars on
programminglanguages, with a particular focus on C programming.
Ch Srilakshmi's deep understanding of C programming stems fromher
hands-onexperienceindeveloping software solutions for diverse
applications, including embedded systems, operatingsystems, and
game development. Her practical approach to teaching,
combinedwithreal-worldexamples, makes complex concepts easy to
understand for beginners. "Learn C Programming" is Ch Srilakshmi's
latest endeavor to make programmingaccessibletoenthusiasts and
aspiring developers. In the book, She distills her years of
experienceintoacomprehensive guide that covers everything from the
basics of C syntax to advancedprogrammingtechniques. Ch
Srilakshmi's commitment to helping others succeed in programming is
evident inher'sclearexplanations, step-by-step instructions, and
practical exercises designed to reinforce learning. Whetheryou're a
student, a professional looking to expand your skill set, or simply
someone curiousabouttheworld of programming, "Learn C
Programming" is the perfect resource to kickstart your journey. In
addition to writing and teaching, Ch Srilakshmi enjoys hiking, playing
the guitar, andspendingtimewith her family in her spare time.

PREFACE

Welcome to "Learn C Programming”!

C programming language holds a special place in the world of computer science and software
development. Its simplicity, efficiency, and versatility have made it a cornerstone of modern
computing. Whether you're an aspiring programmer taking your first steps into the vast world
of coding or a seasoned developer looking to deepen your understanding, this book is crafted
to be your guide.

In this comprehensive guide, we embark on a journey through the fundamental concepts
and principles of C programming. From the basics of syntax and control structures to
advanced topics such as memory management and data structures, each chapter is
meticulously designed to build upon the previous one, providing you with a solid foundation
of knowledge.

But this book is more than just a compilation of code snippets and theoretical explanations.
It's a companion on your learning path, offering hands-on exercises, real-world examples,
and practical insights to reinforce your understanding and sharpen your skills. Whether
you're exploring the intricacies of pointers or unraveling the mysteries of function pointers,
each concept is presented in a clear, concise manner, empowering you to grasp even the
most complex concepts with ease.

As you progress through these pages, remember that mastery of C programming is not merely
about memorizing syntax or regurgitating algorithms. It's about cultivating a mindset of
problem-solving, creativity, and continuous learning. It's about embracing the challenges
that come with mastering a powerful tool like C and leveraging its capabilities to create
innovative solutions to real-world problems.

So, whether you're embarking on your first "Hello, World!" program or delving into the depths
of multi-threaded programming, let this book be your trusted companion on your journey to
becoming a proficient C programmer. Let's dive in and unlock the boundless possibilities that
await you in the world of C programming.

Happy coding!

Ch Srilaxmi

C PROGRAMMING KEYWORDS AND IDENTIFIERS....cciiiiiiisiiiiiniinnreneessessinnesssssssssssssnenns 21
L 0T o Uod (=T Y 21
AAPNADETS ...t b e b bbbt h b b s bR a bt bR bbbt b et h b e Rt e bt b et e a bt ne bt nene 22
DTS .ttt ettt ettt ettt sttt et et b e s bbbt e bt bt h e b e bt ek e e bt ke s A e RS b e R ek e e e Rt e h e AR R e e e bt SR et bt ke b e Rt b et bt b st e st be st ene b et s ne 22
SPECHAI CRATACIELSvivivicteetieieteste ettt et et et et e st et e s teeteeteesee s s e bessesbe et ease et eessessessesae et eeseassessassassessesseaseesaessessensesestesseasesseessensans 22
C K Y WO TS c.uurerenererneesseeseseesesnessssessssnsssssessssessssesssssessssesssssssssssssssessssessssesssasessssesessesssassssnsessssesessesssasessssesssnesesnesssassssanesssnesenne 22
O T[T o T 23
RUIES FOr WITING QN TENTITIEN ...t sttt b e s be bbbt e bt s b et be b et et e be st et ebe e eneene 23
AZ:1 1o [TR, o0 o re U . NRTRRRORRY . . ST 23
Rules for NAMING @ VAIIADIE IN €iieeee et sttt b et b e st be s b st s e b b et b e st et e b e s e e st e be st et ebe e enene 24

Constants/Literals: A constant is a value or an identifier whose value cannot be altered in a program. For example: 1, 2.5,

"C Programming IS EASY"", BLC.uuuieerrrerressrreesessarersesssressssssssssssssssssssssessssssssssssansessssanesssssnnasssssnsssssssnsessssanesssssasesssssnsessssanesssssanass 24
O g C=To T ola] 0] =T] TSP RTPTRPP 24
2. FlOAtiNg-POINT CONSTANTS.veiieiieieeiteete et eettesteesteeteebe et aeisaesseesseesseesseasseassasssesseessesssesssesssesseasseanseanseassenssessseseessenssesssesseesses 25
3. CNATACTET CONSLANESc.vviaeieteiieret ittt sttt b et a Rt e bt s R et s e bt s s R et a bt r s et sn et s n s et sneneaeerne 25
4. ESCAPE SEOUEIICES ...cuveeuveeueerueeeueerteeteenteetesseesueesaeesseessesnsesnsesseesseanseenseensesnsesssesssesssesseensesnssensesseesseensesssesnsesssesnseseesseessesssesnsenns 25
T 1110 o] TS 1] £ TSP 26
6. ENUMETALION CONSTANTSeiveneeeiiterieiiet ittt sttt st ettt et et e b sae st e b e s b e st ehesae st ebe s e eseebeseesbebesaeaeehenae st ebeseemeebesbeneebenaeneerenrennenens 26

C PROGRAMMING INPUT OUTPUT (1/0): PRINTF() AND SCANF() ceeeeeeeeerrnnreeeerrsesccssssnnnnneeeens 29

EXAMPIE H#1: C OULPUL ceeerrerieeiieseeeseeasesesstssesessesanessatsssssessssessssssssssssssssssssssssnssssssassnsssssnsssssssssassssasesssssssssssssassssssassnssssssssssass 29

EXample #2: C INEJEE OULPUL ..cccveeeeeerseeeeeeseeesesseeesssssnessssssnessessnsesssssnsasssssnsessssanesssssasesssssnsesssssnsassssanesssssasesssssasessssanessassaness 29

1T TU 0 Lo o [0 I BT) 1 T U1 TN 29

Example #3: C INteger INPUL/OULPUL ...eeiieieiiceeieetretssets s et ssss s se e s e s s st s s s e s me s sas s as s s s e s sme s as s sasassanesannesananas 29

Example #3: C FI0atS INPUL/OULPUL ..ceeeueeiereeiereiereeiiseeeseeseseesssassssanssssnsisssesssassssssssssssssssssssassssassssstassssesssnesssasssssnssssesssnssssanss 30

EXaMPIE #4: C ChAraCer /O ..cueiiereeirteicerirseesssneiistesssesisssesssssssssssssssssssessssssssssssssssssssessssssssassssssssssssssssssssassssassssssssssnessnns 30
LAttle DIt ON ASCH I COUR ...ttt ettt skttt r ke a et R b n et n bt sesneseeenenenee 30

LT g 0 LTS A O N T O I I o T[T 30

LT a0 LT G A O N T O I I o o[O 31

More on Input/Output of floats aNd INTEGEIS ..cciiviiiiiiiiiiiiiii e ssse s s ssessessesnesane 31

Narsimha Reddy Engineering College NRCM

Example #7: 1/0 Of FIOALS @N0 INTEGETSouveiieiiieieiieete ettt sttt ettt st s bt st e at et et e besbeebeeaeeatentensesbesaeebeeneeneeneans 31

C PROGRAMMING INPUT OUTPUT (I1/O): PRINTF() AND SCANF() ceeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeenenns 32
EXAMPIE H#1: C OULPUL ceerieerieeeiereeresnesesesessnesessesesssssssnsssssessssesssssssssssssssessssessssssssassssssessssesessessssssssnsessssesssnesssasssssnessssesssnessnns 32
e L0] o] (=2 O T 1 (=T T=T @ 11 1 01U | N 33
Example #3: C INteger INPUL/OULPUL ..civuiiiiiiiiiiiisiississiistsstsstsst et ssstssstssstssstsestsestsestssntsosssontsenssensssssssnsssssssssssssssssssnsess 33
Example #3: C FI0AtS INPUL/OULPUL c...cieuiiiuiisiiiiiisiissiissiisisssesssisstsssessse st ssstssstssstsestssstsestssstsostsosssessssnsssssssssssssssnssssssssssssssss 33
EXaMPIE #4: C ChAraCEr 1/ .uuueiiireeeirericeeecreeecsntiiseesseesessessssesssssssssnessssesssssssssssssssessssessssssssassssssessssesssnesssasssssssssssessnessnns 33
LAttle DIt ON ASCH COUR ...ttt etttk et e bt s h b e s b bt e bk e e b b et e b bt se b eseeebesenea 34
EXQMPIE #5: C ASCII COUE ..uurriiiiriereierieriinseesicsseressssssessessssesssssssesssssnnesssssnsessssssasssssnsesssssnsesssssnssssssanesssssnsesssssnsessssanasssssanasss 34
EXAMPIE #6: C ASCHI COUE ..cueirneireeerinerieeriestesesntsisntssssssssssesessssssssssssnsssssssssasssssssssssssssssssssssssassssasssssssssssssssassssssassssssssassssasss 34
More on INput/Output OF FlOatS AN INTEYETS .eeireretieririririrtrisrriesttiestssstsesresssnesssessssassssanssssnsssssesessssssssssssssssssssessssssassssasasss 35
EXample #7: 1/O Of FIOALS QNG INTEGETSeoveieuiiterieteitertee ettt ettt st sttt sttt sttt s b et be s be bbbt e b et e st e b e st et e b e s e e st e benbe st sbeneeneene 35
C PREPROCESSOR AND MAGCROSccovvtieemmemmeeeremimmmemmmeesiemtsemmmmmmmmmmmmmememmmtmmmsmmmmmmmsmsmmmmmmmmmmmmmmmme 35
INCIUAING HEAAEE FIlES .eueiiueiieeirirnerineristeseseeiestessaesssnesesnesessesssassssansssnsesessssssasssssssssssssssssssssesssassssassssanssssnssesassssassssansssnsassnns 36
MACKOS USING HUCTING «eeireirieerireiineiiestiistisstesstesestesssaessenesssnssssnssesassssasssssnsssssessssssssassssssssssssssssesessesssssessssssssnssessssssansssanasss 36
Example 1: USING #0ETINE PIrEPIOCESSON .. .veiuveiveesieeitieteeteeteesteeteeteestesaeseesreesteesseeseesseassessaesseessesssessaesssesssesseessesnsesssesssensennsens 36
Example 2: USING #0ETINE PIrEPIOCESSONveiuieiveeieeitieteeteeteesttesteetestesaesreesteesteesseesseessesssesseesseessesssesssesssesssesseessesnsesssesssessennsens 37
CoNditioNal COMPIATION...ciiiiiiiiiiiiriiiicrrtriisireeeesseeeeesseeessssanessessanesssssnssssssanesssssasesssssnssssssanessessnsesssssnsesassaressassanessssnsessssanesss 38
USES OF CONTITIONAL ...ttt ettt st sttt b e e b et e b e st e st e st e h e e e bt e R e s e e bt b e e emt e b e na e st e b e e e st e b e naeme e b enaene e 38
HOW 10 USE CONTITIONAI?viieriiiieiiie ettt st h et eb et et h et s eh et n st s e st seenesesaen et nenenenea 38
Predefined Macros ... [EE | WSS, NUSS SSSSSaemens. ... SN, SUCSSS. WORNROROE MOM...........cccc0oneennnnentisnnsnnsneas 39
EXamPple #3: PredefiNBO IMACIOSeeuieieierieriisieeeeteteste st sttt eseeseeseesaessesaeetesseeseessessensesaestesseessessensassessessesseensensensensessessensenssesens 40
C STANDARD LIBRARY FUNCTIONS .iiiiiiiiiiiiiiinemmmsmssiiiiimmmssmsssssismimsmsssssssssssssssssssssssssssssssssans 40
Advantages of USING C lHDrary FUNCLIONScccveeicreiercerinesisteissesisseesesessssssssssssssssssssssssssssssssssnssssssssssssssssssssnsssssessssssssassssssesse 41
1. Theywork. 8. 8. 8 & L & N& B8 e 8 8 8 s B 8K & T e M 41
2. The functions are optimized fOr PEITOIMANCEcc.o ittt st st ebe et et st s besbeebe e e eneeeens 41
3. It saves considerable deVEIOPMENT TIMEc.oiiiiiiie ettt at ettt st s b e bt ebe et e e e be st e sbesbeebeeaeenseneens 41
3. The TUNCLIONS Are POITADIEoeeeeeee ettt h ettt ettt s bt s bt s heehe e st et e beseeebesbesbe e st enbenee st esbesbeebeeneenseneans 41
Use Of Library FUNCLiON TO FiNA SQUAIE FOOLueiiceeicreriereiereresnesssneiessesesssssssnssssssssssessssssssassssssssssssssssssssasssssssssssssssnssssans 41
C Library Functions Under Different HEAAEE FilEceicveeereeiereeicieieseeisnesseeiessesessssssnesssssssssssssasssssnssssnsssssssssassssansssansssnns 42

Narsimha Reddy Engineering College NRCM

EXamMPIe #1: AFTTNMELIC OPEBIALOISeeitirtertieteeiteetetet et ettt ettt et e e see et e e ae e st et e tebesaeebe s st eaeenee s ebesbeebeeneensentensenbesaeeseeneeneensans 43

Increment and dECrEMENT OPEIALOES wivvuiiveisiiieiiiisiiisieisiessie st s st s sa s s ss s s b s b s s b s s b s s b s s b e s b e s b s s b s sab s sab e s b e sabesaaesrassraasnaas a4
Example #2: Increment and DECrEMENT OPEIALOISc..ceruirieuirierieierterteie sttt ettt ettt st st eae bt e bt bese e bt b e nee st s b e sa et ebese et ebeneenene 45
C ASSIGNIMENT OB AL0NS e ueererrerirreeisseesessesessessssssssssesessesssssssssssssssesssssssssssssasessssesessesssassssssesssssssssesssassssssessssesesaesssassssasesssnassnns 45
Example #3: ASSIGNMENT OPEIALOIS vueeirreerereerererereressnessssessssessssesesssssssssssssesssssssssssssssessssessssessssssssssessssessssssssasessssessnsesssnesssanes 46
(O o L= Lo T @] oL 1 0] ¢ R ST RSRRSTR 47
EXample #4: RElatiONal OPEIALOIScoveutiterieiietertettetert ettt ettt sttt sttt sttt be st e st b et e bt s be st ebe s b e st e st e b e b e st e b e st eneebene e st ebenbe st et enaenene 47
C LOGICAI OPBIALOIS. ...c.evetineeetrteeeteetertet ettt sttt sb etk et bt b e st e st ekt s e es e b st es e ek s e e st eb e s b e st ebeseeateb e s b ea e ebesbemeebesb et ebesb et ebese et ebenbennenens 48
EXaMPIE #5: LOGICAI OPEIALOISeeueriiieeuirteteterteteteetest et sttt st st et te st et e s besee st et she bt s be st e bt s b e seebesbe e ebe e b e b enesbe e ebeebe e ebeebe st eneebeaenene 49
BIEWISE OPEIALONSetireetirteietertetet et st ettt ettt ettt et st be et st bt sbe st e bt b e st e bt e b et ebe e ke aE e bt e b a4 e bt e b e e ebeehe e ebe e b et eae e b e st eneebe st e st ebe st eneebenbenene 50
OTNEE O ALONS.ceiieerureriersreeeeesnessessnnessessnnesssssnesssssssesssssnsesssssnesssssasesssssnssssssnsessessanesssssnssssssasessessnsesssssnsessssanesssssnnessssansessssanass 50
(0010004 F- W @] o =] 1o S PSPPI 50
LI LCTET 4= o 1=1 = (] PSSR 50
EXAMPIE #6: SIZEOT OPEIALOLc.viuitiriiietertertee sttt sttt sttt s be s b st bt b st e st e b et e bt s b e seebe e b et e bt e b e e e bt e b et ebeebe st e st sbenbe st et enaenene 51
C-TEINANY OPEIAIOT (72) cvevetettrtereetertertet et rt et et st ebesbe st sue et e st eueetesee bt ebesheae et e st est ek e seeseebe s b eaeebeseestebesbeaeebesbeneeb e s b et ebesbentebesbeneebesbeneenens 51
C IF, IF...ELSE AND NESTED IF...ELSE STATEMENT ..ottt 52
LT - 1 (=] 01T 0 52
FIOWCNAIT OF IT STAEMENT ...ttt ettt st r et s r et snenesenee 53
EXAMPIE #1: C i STAIBMENT....e.eitieeeetieter ettt ettt e e ae st e sbese e et e e e essessessessesseesessesssessensessessensessesnsensensensessessenseessensans 53
Cif...else statement . BESSS— o O ... N, ... o, DU, ... SNc.cccmnesmnasmnasnnasnnasnae 54
YL D0) P - T TP 54
FIOWChArt O if...e1S8 STATEIMENT.....c..uiitiiit ittt ettt sttt ettt e be e bt h e e bt e b e st b e e e bt e b e e st e b e ne st e b eeese e 54
EXample #2: C if...eI1S€ STALEMENTc.ooviiie ittt et e st e e s teetesseesees e et e tesseeseeseessensensessessessenseessensans 55
Nested if...else statement (if...elSeif....e1S8 STAEMENT) ..eiveerrerireririrtirnrriererereeresressre s eesesaesesanessanesssnesssnssssanssssnessnnessnnesssnnss 56
Example #3: C Nested if...e1S6 STALEIMENTcicciiieierie sttt sttt et te e st eseesee s e sesseesesseessensensessessessenseeseensans 56
C PROGRAMMING FOR LOOPu...ciiiiiiieeeneciiiiiiiiiieennnsiiiiiiiiiemsmssssiiiiimssmsmssssmiiimsssmsssssssssmsssssnss 57
FOF 00D e ieeerenerisneriseeeeeessseessseesesnessssnssssnessssesssnssssansssssessssesssassssnssssssessssessssesessssssssessssessnnesessesssnssssnsesssnessssesssnesssasessasessnnsssnns 58
HOW FOF [OOD WOTKS? ...ttt ettt ettt ettt te e s e esa e e es s e s s e et e s se et e esae st esseseeetesseessessensesseseeasaeseensensensensessensenseaseensans 58
FOF TOOP FIOWCNAIT ...ttt et et s ek s bt e b e ae e st e st e se e be s bt eb e eaeeatem e e e enbeseeebeeaeen s et e e e besbeebesneeneeneensan 58
T4 o] (A (0] g (o o] oIS P T PTRRRUSRRRR 58

Narsimha Reddy Engineering College NRCM

C PROGRAMMING WHILE AND DO...WHILE LOORPccciiiiiiiiintreeeiiiniscnneeeeessnncssssesseeeen 59

WHIIE JOOP ceereieeeeiieeiieeicsnesesesesneessseeseseesesnesessessssnssesnesesnsssssnsssssesssnesssnesssnssssssesssnesessesssnesssnsessssesensesssasessssesssnessnnesenesssnssssnnesse 60
HOW WHITE TOOD WOTKS? ...ttt st b e st b e st b e st be b e bt b e e bt s b e b bt e b et e bt e b e st e me e b e st e st e benbe st ebeaenene 60
FIOWCHAT OF WHITE TOOP ...ttt b et b e s bt b e bbbt b st et b e st et e b e se et ebeaenene 60
EXAMPIE HL: WHITE TOOP -ttt b et b e be bt b e s b e bbb et e bt b e st e st e b e st e st e benbeneebeaenene 60

0. WHIIE [O0P e eeceeeererieterereeriseeiseessseeseseesesneesssnesssnesesaessssasssssssssnesssnesessesssnnessssesesnesssnesssnsessssesssnesssnsessanesssnesesnesssnssssanesssnessnne 61
o LT T [T oo)Y] - RS RPSTSR SRS 61
HOW dO...WHIIE TOOP WOTKS?i.eiieetieeieieteste sttt e ettt ta e st et et e st e e teebeessessessessesaeatesseassessessassesseaseaseassessessensessenseaseassensans 62
EXAMPIE #2: J0...WHITE TOOP ..ttt b et bbb e bt b e bbb et e bt s b et e bt b e ne e st e benb et et e e s ene 62

C PROGRAMMING BREAK AND CONTINUE STATEMENT cccvviiiiiiiiieiiiineneeneenineneneneeesenemeeeeenene 63

0] T Q] F= =T 1T o | N 63
SYNEAX OF DIEAK STALEIMENL.......couiiitiitiet ettt ettt st b et b e et b e s b e st e b st e st e b e s b e st ebe s b e st ebesbeaeebe st et ebesa et ebesbeneebens 63
FIOWChart OF DIreak STAEIMENT.......c..c.iiii it sttt b et b e s b st ebe bt be e b et e bt s b et e bt e b e st e st e benbe st ebenaeneene 63
HOW DIeak STALEIMENT WOTKS?c..iiiiiitiieiertet ettt ettt sttt ettt st s b st be st ae bbbt b se e bt s b et be e b e b e bt s b et e bt e b e nee st ebe st eneebenaenene 64
EXAMPIE #1: Dreak STALEIMENT.........cciiiieeieciese ettt et et e st e e te et e e e e saeesaeeste e seesseeseeass e seessaenseassesseeseeesseanseenseansesssesssenseansenn 64

(0101 1 T 1B T=R] = 1 (=] 0 11T | 65
SYNtaX OF CONTINUE STALEIMENTeoiieeee ettt e st et e et e et e e te e st e e teesteestessaesaaesseeseanseenseesseeseeseesseesseensesnsesseesens 65
Flowchart Of CONTINUE STALEMENTcoverueerterieirerieesesiet ettt sttt st sttt s st et b sa et e b e neemeebenaeneebeaenenne 65
HOW CONINUE STALEMENT WOTKS?ociiiii ittt eiene st st eb st b s E e e r et n e S ESE SRS et een et s e st seen st saen et e enenenees 66
EXamPple #2: CONTINUE SEAIEMENTeeieriereitieecieeeitestese st et et et et et e e sessteeseessensessassesseesasseessensessassessessesseensensensensessessenseessensans 66

SYNTAX OF SWITCN...CASE ceueereeeiirerisniriestnieteiesnnessntessseeseseesesnnsssnnssessessssesssassssanessnsesessesssassssasessssessnesssassssssssssnssssassssassssanssssnsssnns 68
SWITCN STAEMENT FIOWCIAIT........ ettt sttt ettt h et b e b ebesa e sa bt s b e es e s et esenn e s st nb e s enesbenneneenn 69

Example: switch Statement// Program to create a simple calculator// Performs addition, subtraction, multiplication or division

depending the INPULTIOM USEE ... ettt ekttt et e e a e et e e te st e testeebeeaeeaeeatententeseesbesbeebeeseensensensesbesbeebeeneenseneans 69
C GOTO STATEMENT Liiitiitietttiisiiiiitieiese e isssssssssseese s ss s sssssss e s s s s sesssssssssssesssssesssssssssssssensss 71
SYNEAX OF OO STATEMENT ...ttt ettt st ettt eh e e a e eat et et e besee et e e heeateatentanteseeebesaeebeeaeensentesbeabesseebeeaeensensans 71
EXAMPIE: GOTO STAIEMEBNTeitiiteeteet ettt sttt a et et et sh e e b e e bt ea e ea s et e besbeebesaeeaten e e s enbeseeebesbeeaseneensenbesbeebesaeenseneans 72
Reasons t0 aVOId QOO SALEMENT.........cierierieriser ettt ettt et e e e st e s testees e essesessesaeetesseessessessessesseaseeseessessensensessessensenssnnsans 73
C PROGRAMMING FUNCTIONSciiciitittteiiiissnisnereeesssssssssssssess s ssssssssssssssssessesssssssssssssesses 73
Types of fFUNCLIONS IN C PrOgramMIMING coecieciseiieeiieiiinieiisiieiisiesssssstssss st ssssssssssssssasssssssbs s b s s b s sassabesassaassaassnsesnsesssssnnas 73

Narsimha Reddy Engineering College NRCM

StaNAArd HDFANY FUNCHIONS.c.ooeeeeee ettt h ettt e st be st et e s aeeae e st et e beseeebesbeebeeaeensense st esbesaeeaeeneeneensans 74

USEI-AETINEA TUNCLIONS. ...ttt ettt b e st b et e b e b e s b e st e bt s b et e bt e b e e e bt e b e st et e b e st e st e b e naeneebeaenene 74
How user-defined fUNCTION WOIFKS? ..ccuiiiiiiiiiiiiiiiiiiiisiisiiscissiscssesssssssssssssnsssssssssssnsssesnesnssans 74
Advantages 0f USEr-defiNE TUNCIIONociiieieeee ettt st e b e st e s teebeesaessensestessestesseesaeseensenes 76
C PROGRAMMING USER-DEFINED FUNCTIONS ...cuuiiiiiiiiiiiinmnniiiiniiiiesssssssmmmsssss. 77
(S0 Ta g o] (=W W EST=T g Ty 1] o T I {1 21 o] o N 77
FUNCTION PrOOtY P eeiecreeerrerireeieseesesresessnessseeseseesesanssssnsssnessssessssessssssssssessssesssnessssssssssesssnesesnesssnssssssesssnesssnesssasesssnessssesssnessrnnes 78
SYNLAX OF TUNCHION PrOTOLYPE .. .vieeeieiectecte ettt ettt et et st eteete et e e e e b et e s be et e e seestessessestessetesseasaeseessessessetesseaseaseassensans 78
CalliNG @ TUNCLION ceeeeieceeeiicreessesseeesssenesessnesssssnnesssssnesssssanesssssnsesssssnssssssnsessassnsasssssnsssessnnesssssnsessssansessssanesssssnnessssansesassanasss 78
SYNEAX OF TUNCHION CAIL.......oeeiiieeee ekt b et et b et b e bbb e st e b s b et eb e s b et ebe st et ebesb et ebesbeneebens 78
(01070 (1o 000 =371 01 o] o IURRORRUIIONY. o SRS .. YOORRUROOOOON .. SRR O 78
Passing argumMENts t0 @ FUNCLION ...cicviiirerieeiieseieseeinstesstssestess e sssasessanesesnesesassssasssssnssssnesssnesssansssssesensesesnssssassssssassnsessssssssasss 79
RETUIN STALEMENT..c.uviiiiiiiiiiiiiitiintiiiiiiist sttt ittt st ssstssa s s st s st s st s st sa s s st s st sestssnssensesssasssssstasstesstesstesstesstesstessnesssessrens 79
SYNEAX OF FETUMM STAIBIMENT ...ttt ettt ettt bbb bt ee et s £ et s b e bbb bbb e st e se s e s e e b bbb e bt et et e et s e b e b ebebebebe s et e ne e sttt 80
TYPES OF USER-DEFINED FUNCTIONS IN C PROGRAMMINGcccvviiiiiiiiininnnnnnnnssiinninneeennnes 80
Example #1: No arguments passed and N0 retUrN VAIUEcccveeieeiiiiniiniinnininisnisnisiisnisnsstssssssssssssssssssssssssssssssssssssens 81
Example #2: No arguments passed DUL & FETUIN VAIUEcoceieeieiieiiiitiitiiitinistnstssnnsn st ssssssssssssens 82
Example #3: Argument passed DUt NO FEtUIN VAIUEocviviiniiiiiniiiitiiiiririsrssrssrssrssst st ssssssssssssssssens 83
Example #4: Argument passed and @ retUrn VAIUEcccceiveiieiiiineiseiseinnistisstissnistisstsssssssssstssens 84
WHhICh QPPI0ACKH 1S DEIIEI? c.ueeeiieeeiiciiiistiicteeseeieee s steeeseeeisatessate s snesesaesesansssanesssnesesntsesasassanessanassnsessssssessssssnnessnnesssnesssassssanasss 85
C PROGRAMMING RECURSION..ccciittieeeineeeemmmemmmmmememememmmmmmmsmsmememmssssssmsesmmssssssssssssmsmsssssssssssssssssssses 85
HOW FECUISTON WOTKS? ...ttt st steiee ettt ebt s b st saest s b se e st e besae st ab e e e st e b e kbt b e e eet e b e e bt e b e st e st e b e ne e st e b e e e st ebenae st ebenaenenne 85
Example: Sum of Natural NUmMbBEers USING RECUISIONcciiiiiiiiiiiiii it eteiteseesiestese s e s e e e e e esaesse s e st e etessaesaessessessessessesseessennens 86
Advantages and Disadvantages Of RECUISIONccuiriiiieirieeieiertesestesese e e eee e estesre e sreeseeseesaessessessessesseeseessessessessessessessesssenes 88
SCOPE AND LIFETIME OF AVARIABLE ... istssnnsasissiassses 88
L0 Tor: LY g T] 89
LC (] o T= LI o g - 1o L 89
EXamPple #1: EXIEINAI ValTADIE.......cc.eoieiee ittt sttt et e e s eeete s st eseesa e sesseseestesseeseessensensesseasenseesaensans 89
L0 LT Y= g T- 1] - R 89

Narsimha Reddy Engineering College NRCM

STATIC VAT TADIE.ceeeieiieeiiieeeeeeeeeieeeeeeeeeteeeeeeeeeeeeeeeseeeseeeeeessssssssessnnnnn 920

EXaMPIE #2: STALIC VANTADIE ...ttt s b s b e bbb e bt s b et be b s e e st e b e ne et b e e s ne 90
C PROGRAMMING ARRAYS . iiiiiiiiittieeeiiiiniiieeensnsssssissiessssnssssssssssssssssnsssssssssssssssssnssssssssssanns 20
HOW 10 dECIAre an @rray iN C? iiiiiiiiiiiiiniiiiiniiisiisciseisesssesssesesssosssonssostssssonssnssossssnssssesnssans 91
Elements of an Array and HOW t0 8CCESS tNEM?....uuiiiiiiiiiiiiiiiiiiiiiiiiisi sttt sttt st st ssat st s st s ssssnssneean 91
How to initialize an array in C ProgrammMiNg?cccoeoeieerieeneneeee ettt sttt be st ebe bt be b e e bt s b e e et e b e se et e besee st ebenaeneene 91
HOW t0 INSert and Print array EIEMENTS?ccuicieieieeetere ettt e sttt e e et et e e s teeteebeesaesaesessesseebeeseessessessessessensesseassensans 92
EXAQMPIE: € ATTAYS weererrererrersrseeseseesessessssssssssessssesssassssssssssssssssesssssssssssssssessssessssessssssssssessssessssessssssssssessssesssassssasessssessssesssnesssanes 92
Important thing to remember when WOrking With C @rTayS........c.cccvuiceiieiiiieieieeseste e eteeieeeesessestestesteeseessessessessessessesssessessenses 93
C PROGRAMMING MULTIDIMENSIONAL ARRAYS ..couiiiiiiiiiiieiininineniiineneninememimmmmmmmemmmmmemmmmsmm 93
How to initialize @ MUItIdIMENSIONAL AITAY ?..ciicccerieirrreeiisreirierseersessnesssssnessessnnesssssnssssssnesssssnnesssssnssssssanesssssanesssssnsessssnsesasse 94
Initialization Of & tWO IMENSIONAL GITAYc.vecveiieiieiiere ettt e et e st e st e steeste e teesseessessaasseesseesseesseansesnsesseesseesseensenssenns 94
Initialization Of & three diMENSIONAT BITAY. ...iv.erviiririieeriet ettt sttt b bbb bbbt b e bt e st s b et eae s bt b enesbenseneaes 94
Example #1: Two Dimensional Array to store and diSPlay VAIUESc.cceviieirinieinenieere ettt e 95
Example #2: Sum of two matrices using TWO dimeNnSIONaL BITAYScererieirerieirierieerie ettt sttt sb e 97
Example 3: Three DIMENSIONAI ATTAYcccveiieieeieeiteeitesteseesee e e tesstesaesteesteesteeseesseasseassassaesseessesssesssesssesssesseassesnsesssesssessennsens 98
HOW TO PASS ARRAYS TO A FUNCTION IN C PROGRAMMING? ...ccoiiiiinnremnnnssiinnnninnnennennees 100
Passing One-dimensional Array 1N FUNCLIONccceiieieierieieneiesesssnsssnssssnsssssessssssssssssssssssssssssassssanssssnsssssssssassssassssanssssnsssnns 100
Passing an entire one-dimensional array t0 & fUNCLIONcoiiiiiiiiiiie ettt sttt ettt s sb et eas 101
Passing Multi-dimensional Arrays t0 FUNCHION c......cociiiieiieiiiiiiee it ee s see st s s e s s s s s s s ae s s s s s e sanns 101
#Example: Pass two-dimensional arrays t0 @ fUNCLIONccoiiiieiiiiiiie ittt sttt ettt b e s be e eae e nean 101
C PROGRAMMING POINTERS AND ARRAY S .. iteerriiiniiininnsssessiiiniiissessssssssiisssssssssssn 103
Relation between Arrays and POINTELSicciieiiiieiirtiitsieiese s ses st ssss s s e s e s sas s s s s s s e s ms s as s as e s ss e s smesasassssasasnnasanns 103
Example: Program to find the sum of six numbers with arrays and POINTEFSccevirieiierierene et 104
C CALL BY REFERENCE: USING POINTERS [WITH EXAMPLES] ...cccoevirrreeeeeeeeccccnnneeeeeenn. 105
Example of POINTET ANG FUNCHIONS.......coiiiiiiieiise ettt ettt st b e heeh et et e e e seesbesbeebeeaeenb e b e sbenbesbeebesneenseneenean 105
C DYNAMIC MEMORY ALLOCATION . cittueeeiiiiiiiineeennniiiniiiiimemmsssssisssiimmssmsmsssssssssisssssssssssssssssns 106
L 0 1= | [0 TN 107
SYNEAX OF MAITOC() -ttt ettt a e e b e a e st et et e be s heeb e e aeea e ea e et e beseeebeeaeeseen s et e besbeebesaeeneeneensenes 107

Narsimha Reddy Engineering College NRCM

SYNEAX OF CAHOC() -ttt ettt ettt b e bbbt h e bt b e b e st e bt s b e st e bt e b et eb e e b e na e st e b e st e st ebenbemeebenbene et e neeneene 107
L i T) R 108
SYNEAX OF TTEE()..veuverretisteitectieeete ettt ettt et e et e e st e e testeeteesa e st e s tesseetesseaseessessessessesbesseeseeseessesse st et eeseeseeseassessesseseseeaseaseessensans 108
Example #1: UsSing C MalloC() NG TEE() ..vveverieriieiiieieieiete et ste sttt ettt et e st testeste e e e b e s e b e s tesaeeteessesbessesestesseasaeseessessanses 108
Example #2: USIiNg C CAlIOC() AN FIEE() ..ovveverieriieiiiietieeeiete ettt ettt et st teeta e e e b esse st e s besbeeteestessessessestessentaeseessensensas 109
LG = | oo) R 110
SYNEAX OF FEAITOC() ..ttt ettt b et b e bbbt e bt b st e bt b et e bt e b et eae e b et e st ebeneene e b e naeneebenaenene 110
EXample #3: USING FEAITOC() ... eveeeiiet ittt ettt sh et h bbbt b et bbbt b et e bt s b et ene s b e e ene 110
C PROGRAMMING STRUCTURE ..ccuuuuiiiiiieineninnnnneninnneeessnssnsenssses 110
ST U0 U= D= YT o N T o X 111
SYNTAX OF SITUCTUIEeueteeteeet ettt b etttk s e bt ek st b e b e st e bt sb et e bt e b et ehe e b e b e st s b et eae e b et ebe e b et emeeb e st eneebe st eneebe st eneebenaenene 111
Structure variable deClarationccieieiecseiiiiiniiiiiiicenti st st s s e s a e s bR s s asne s 111
ACCESSING MEMDEIS OF @ STFUCTUIE weeiieceeeiicseeeiiesiesiessneesissnesssssanessessstesssssnesssssanesssssnnesssssnsessssanesssssanessessanesssssnsassssansssassanasss 112
EXAMPIE OF SEUCLUIEeeeeeeeee ettt e sttt sa e et e e e eae et e e st e e s teesaessaesseesseesseanseesseasseessesseenteenseessenssesnsesneesseenseansennsenns 112
Keyword typedef WHile USING STIUCLUEvicueiieeiiee et se sttt ettt et e st e et e e e sbesaaesaeesreesbeesseenseeasessaesssessaesseensesseesneennes 114
STrUCTUTES WITNIN STFUCTUIES weevueiueiiiiiiiiitisiiieitcsesstitistesstsstseessesst st ssessesst st sasssesansas s sessesas s b ssse s st sabsanesesbtsanesnesntsanssnsaness 115
Passing StFUCTUIES 10 @ TUNCLION «..civeeiriceiieeiieeeieseeiesetesstssestese e sesnesesanesssnesesnesesasssssssssnnsssssesssassssanssssnsssssesssnssssansssnnassnnsssnns 115
C PROGRAMMING STRUCTURE AND POINTER .cccuuuuiieeeimnmnnninnnnnnnnnmssssssnsasmmmssssssssssssssssssssssssses 115
Accessing structure's Member throUGN POINTEEcccviereiisrtriertrierteiereeresesistessssessssssesassssassssanssssesssssssssssssassssssassssssssassssans 116

1. Referencing pointer to another address to access the memory_Consider an example to access structure's member through

10 111 S U 116
2. Accessing structure member through pointer using dynamic memory allocationc.cocoierineniniienenene e 117
HOW TO PASS STRUCTURE TO A FUNCTION IN C PROGRAMMING? ...ccccviiiiiiiiiiiininiiniinnnnns 118
PASSING SLIUCTUIE DY VAIUEcvevietisiineeeeieiieneesieste s estes e et eae st estas e esessessseseenses e e e s aabanssesaenaessassansesaesbanseensassessensessensessenssnssensen 119
PaSSING SLIUCTUIE DY FEFEIENCEc.eeeieeeieeee ettt ettt e b e bt s bt eh e et et e b e st e besbeebeeheentente e ebesbesbesneensensenean 120
C PROGRAMMING UNIONS ..niiiiessssesssssssssssssssssssasssssssssssssssssssssssssssssssssssssses 121
HOW to Create UNion VAriADIES? ...ttt s sassss st b s besse s s saasnesn s 121
ACCESSING MEMDEIS OF 8 UNTON ...ttt h ettt e bbb e s bt ehe e s e et et e sbesbesbeebe e st eneebesbesbesneeneensenean 122
Difference Detween UNION ANd SEEUCTUNE ..ccuiiieeiieieiitietsie e ses st s s s e e s s s e sas s s sas s s s s s me s sassasas e s sne s sassasassssasassnsasnns 122

Narsimha Reddy Engineering College NRCM

More memory is allocated t0 StrUCTUIES than UNMIONooueiieieieee et sttt ettt et st sb e et e e neas 123

Only one union member can & aCCESSEU At 8 TIME........c.oiiriiiriieerer ettt sttt b e 124
PaSSING UNION T0O @ FUNCLIONeiuiiitiiteiietirtetet sttt ettt ettt ettt b et b bt b e et b b et e bt bt e bt e b et e bt e b et ebenbenaeneene 125
C PROGRAMMING FILES HO auuuiiiiiiiiiicinnretetiiisiiccssnnsseeessssscsssssssssssssssssssssssnsnsssssssssssssssnssssssssss 125
R AT LNV 1 LR L3N TCT=T 0 [T T 125
TYPES OF FlESauiitiiiiiiiiiiiiiiiiiic ittt st st st s b e s bt s bt s bt s bt s bt s b s b e s be s be s be s bE s RE SR e SR e SR e bR e s R e s R e s Rt s bt sen 125
L TEXE FIIES ettt bbb bbb R bRt R bR bt R bt e Rt b bt e bt r bt e 125
B = 10T T 11T TR SRS 126
FIlE OPEIAtIONS.cciiccreeerierrreriesrreriessnnessessntesssssnessessnnesssssnssssssanesssssnnesssssnssssssasesssssnsessssansessssanesssssnsessssnsessssanesssssnnessssnsesassanasss 126
WWOFKING WITN FIES .ueiiieiiiiiiieeiieiisenissenesntnsstsssnsseseessseesssassssasssssssssssesssassssassssasssssnesesaesssassssassssssassssesesassssasessssessnnssesnssesnnss 126
Opening a file - fOr Creation AN EUIT.....cccvveveiirriierinierniereristsrsrsssserssseess st ssssnsssnesesaesssansssassssssssesnssssassssssssssnesessasssassssasasss 126
ClOSING @ FilBaueiiieiiienriiriiieretieseiisteisstsieseeseseesesanessnsssssssasassssasssssssssssessssesssasssssssssssesessesesassssassssssesesassssassssssesssssssssesesassssasasss 127
Reading and WIiting 10 8 tEXE filE...ccuiiiriiirreririiiireiitiisteissteie st st sssarsssanssssnesesassssasessanasssnesesassssanssssnassssesesassesassssasassnnassnns 127
R AT LT T TR oI U (= =R 128
REAAING TrOM @ TEXE FIlE ...ttt e s e st e e e e et e e aesaae s et e saeesseesseeseeeseesseenseesseesseassesnsesseesseesseansennsanns 128
Reading and Writing t0 @ DINANY FIlE cevueeiiiereeeicceerrcceessssseesseseee s s e s ssssnressesne e s s s sanesssssanesssssnsessssansessssanesssssnnessssannesassanenas 129
WIIING 10 @ DINATY FIIE ..ttt ettt ettt et st e s e et et e sesa e et e saeeseeseensensesae st esseeneensensensesaessesneeneeneensn 129
Reading frOmM @ DINAIY FIlEc.ooiieieiciecee ettt ettt ettt et e e et et e st e st e saeetesseeseessessensessensesseensensensn 131
Getting data USING FSEEK() ceveeeerrererrrrsssnrissresssesssssssssnssesuesesnssssnsssssassssssssnsssssssssnssssssessssssssassssnsassssessssesssassssasssssnsssssesssassssasasss 132
SYNTAX OF TSEEK() 1. v veeveeteetieieiteite it e st e st esteete et e eteesteesteesssesseesaeasaesseesseessaenssanseenseessaassenseessaansessseaasesssesssesseenseanteensenssenssesannsens 132
e T 1]][I0 £T=T=] (S USROS 132
C PROGRAMMING ENUMERATION ..ccuiiiiiiiiiinieennnnniisiniimmenmmmmsssmmiiiimemsnssssssssiimmssssmssssssssasssnns 134
Enumerated TYPE DECIAratiON. ... ciiceiiieiietieeee ettt et s e s st s s e s s e s me s as s s an e s anasanns 134
EXAMPIE: ENUMEIATION TYP ...ttt ettt sttt ettt et ettt e bt eb e e heea e e st et e bese e e b e s heeh e e et e st e eeseeabesbeebeeaeentense s ebesbeebesneensentenean 135
Why enums are used in C ProgramIMiNg?ccceeeceeieseieseressnessssssessesssiessssesssssssssissesessesestesssssassstesessesossssesassssssassssesesassasasss 135
HOW 10 USE ENUMS FOF FIAQS?... . eteeicticieeeeees sttt ettt ettt e et e e s e et e s st et e e seeseesse s e seseeeteeseeseessesseseseensesseessensensan 136
INtroduCTION T0 DALA STFUCTUIES ..ueieivuirueieieisnisieititissestitissssesstitssasssesstsesssessesstssssssesse st ssssssesstsnssssesnesstsnsssnssnessssssesnsness 150
Time Complexity Of AlGOTTTNMSueiiiviiireiirericeeiererrsre s ssseeseseesssanesssnesssaesssassssnnessanesssnesssassasanassanssssnesssansssasessnnessnnassnnas 152
LR oTo [Tox AT] R (o TS Ta o £ O 154
2T 0] 0] 30T 1] T 155

Narsimha Reddy Engineering College NRCM

ST o TS] N 157

L@ U T T3 @S To T i N [o] 1)1 1T R 160
Y =T 0TI T] N o o]) 1 o o 162
[YT oS o] i AN oo 1 12 DO TR TSP 164
Searching AlGOTthIMS ON ATTAY ..cceiicceeicrerirerireeisesissesesesesssssssessssessssesssssssssnessssessssesssasssssssssssesesaesssassssssessssessssesssassssanasss 168
3] 7 10 170
QUEUE DALA STIUCTUIES .. uuetiiisieeiiisisetsisssiesiisssesssssssssssssssssssssesssssasssssssssesssssssssessasssssssassssssassssessassssssssssssssssssssssasssssssanssssssnns 173
Queue Data STrUCLUFe USING STACK.....iiiiiiiiiistiisiisiiisiiissiisseisstssseisstssse s ssse s ssesssesssessssssessesstssessessesssesnssnesnsssnssnesnns 177
INtroduCtion T0 LINKEA LSS ...ccuiiiiseisiiueniiiiiiniiiiinisistitiscssisstinisssssstsssssssesstsssesessssssssssssessssssssssssessssssssssssessssssssnssness 179
I T=o gl T g =T I T 180
L] o1 o I T] 185

IMpPlemeNnting CIrCUIAr LINKEU LISEeeveiieieeieeie et ste sttt et sttese st e s e ete e e e ensestaesteesseesseesseessesseesaeesseessesnsenssesssenseenses 186

Narsimha Reddy Engineering College NRCM

Introduction to Programming

A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has
to perform depends on what happened when it performed a previous instruction. This section gives an
overview of the two main ways in which you can give these instructions, or “commands” as they are usually
called. One way uses an interpreter, the other a compiler. As human languages are too difficult for a
computer to understand in an unambiguous way, commands are usually written in one or other languages
specially designed for the purpose.

Interpreters

With an interpreter, the language comes as an environment, where you type in commands at a prompt and
the environment executes them for you. For more complicated programs, you can type the commands into a
file and get the interpreter to load the file and execute the commands in it. If anything goes wrong, many
interpreters will drop you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be
corrected readily. The biggest disadvantage comes when you want to share your programs with someone.
They must have the same interpreter, or you must have some way of giving it to them, and they need to
understand how to use it. Also users may not appreciate being thrown into a debugger if they press the
wrong key! From a performance point of view, interpreters can use up a lot of memory, and generally do not
generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before.
This kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also
be argued that the UNIX® shell (sh, csh) is itself an interpreter, and many people do in fact write shell
“scripts” to help with various “housekeeping” tasks on their machine. Indeed, part of the original UNIX®
philosophy was to provide lots of small utility programs that could be linked together in shell scripts to
perform useful tasks.

Interpreters available with FreeBSD

Here is a list of interpreters that are available from the FreeBSD Ports Collection, with a brief discussion of
some of the more popular interpreted languages.

Instructions on how to get and install applications from the Ports Collection can be found in the Ports section
of the handbook.

BASIC

Short for Beginner's All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching
University students to program and provided with every self-respecting personal computer in the 1980s,
BASIC has been the first programming language for many programmers. It is also the foundation for Visual
Basic. The Bywater Basic Interpreter can be found in the Ports Collection as lang/bwbasic and the Phil
Cockroft's Basic Interpreter (formerly Rabbit Basic) is available as lang/pbasic.

Lisp

Narsimha Reddy Engineering College NRCM

A language that was developed in the late 1950s as an alternative to the “number-crunching” languages
that were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact, the name is
short for “List Processing”. It is very popular in Al (Artificial Intelligence) circles.

Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy.

Various implementations of Lisp that can run on UNIX® systems are available in the Ports Collection
for FreeBSD. GNU Common Lisp can be found as lang/gcl. CLISP by Bruno Haible and Michael Stoll is
available as lang/clisp. For CMUCL, which includes a highly-optimizing compiler too, or simpler Lisp
implementations like SLisp, which implements most of the Common Lisp constructs in a few hundred lines
of C code, lang/cmucl and lang/slisp are available respectively.

Perl

Very popular with system administrators for writing scripts; also often used on World Wide Web
servers for writing CGI scripts.

Perl is available in the Ports Collection as lang/perl5.16 for all FreeBSD releases.
Scheme

A dialect of Lisp that is rather more compact and cleaner than Common Lisp. Popular in Universities as
it is simple enough to teach to undergraduates as a first language, while it has a high enough level of
abstraction to be used in research work.

Scheme is available from the Ports Collection as lang/elk for the EIk Scheme Interpreter. The MIT
Scheme Interpreter can be found in lang/mit-scheme and the SCM Scheme Interpreter in lang/scm.

Icon

Icon is a high-level language with extensive facilities for processing strings and structures. The version
of Icon for FreeBSD can be found in the Ports Collection as lang/icon.

Logo

Logo is a language that is easy to learn, and has been used as an introductory programming language in
various courses. It is an excellent tool to work with when teaching programming to smaller age groups, as it
makes creation of elaborate geometric shapes an easy task.

The latest version of Logo for FreeBSD is available from the Ports Collection in lang/logo.
Python

Python is an Object-Oriented, interpreted language. Its advocates argue that it is one of the best
languages to start programming with, since it is relatively easy to start with, but is not limited in comparison
to other popular interpreted languages that are used for the development of large, complex applications (Perl
and Tcl are two other languages that are popular for such tasks).

The latest version of Python is available from the Ports Collection in lang/python.

Ruby
Narsimha Reddy Engineering College NRCM

Ruby is an interpreter, pure object-oriented programming language. It has become widely popular
because of its easy to understand syntax, flexibility when writing code, and the ability to easily develop and
maintain large, complex programs.

Ruby is available from the Ports Collection as lang/ruby18.
Tcland Tk

Tcl is an embeddable, interpreted language, that has become widely used and became popular mostly
because of its portability to many platforms. It can be used both for quickly writing small, prototype
applications, or (when combined with Tk, a GUI toolkit) fully-fledged, featureful programs.

Various versions of Tcl are available as ports for FreeBSD. The latest version, Tcl 8.5, can be found in
lang/tcl85.

Compilers

Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then
run the compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the
editor; if it did compile and gave you a program, you can run it either at a shell command prompt or in a
debugger to see if it works properly. [1]

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things
which are very difficult or even impossible with an interpreter, such as writing code which interacts closely
with the operating system—or even writing your own operating system! It is also useful if you need to write
very efficient code, as the compiler can take its time and optimize the code, which would not be acceptable
in an interpreter. Moreover, distributing a program written for a compiler is usually more straightforward
than one written for an interpreter—you can just give them a copy of the executable, assuming they have the
same operating system as you.

As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial
compiler makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not
include an IDE in the base system, but devel/kdevelop is available in the Ports Collection and many use
Emacs for this purpose. Using Emacs as an IDE is discussed in Section 2.7, “Using Emacs as a
Development Environment”.

Software:

Organized information in the form of operating systems, utilities, programs, and applications that enable
computers to work.

Software consists of carefully-organized instructions and code written by programmers in any of various
special computer languages. Software is divided commonly into two main categories:

(1) System software: controls the basic (and invisible to the user) functions of a computer and comes
usually preinstalled with the machine. See also BIOS and Operating System.

(2) Application software: handles multitudes of common and specialized tasks a user wants to perform,
such as accounting, communicating, data processing, word processing.

Narsimha Reddy Engineering College NRCM

System Software

Operating

System Hardware Utilities

CPU . disks mouse,
printer, etc.

Compiler: Translating from source code to machine code executing directly.
Interpreter: Translating from source code to machine code executing it line-by-line.
Assembler: Translating from Assembly language to machine language.

conversation of source to machine code

Binary Evaluate| 2* |2 2% 2" 7' Decimal
Decimal Value 16 & 4 2 1 Value Number
0 = 0 0
1T = 1 1
1 1.0 = 44240 b
1.0 1.0 = B8+0+240 10
10 1 1 0 > 16+0+4+42+0 22

—e
—e
=
=
—e
L'

16+8+0+0+1 25
16+8+4+2+1 k]

—e
—e
—t
—e
—t
W

Narsimha Reddy Engineering College NRCM

Programming Languages

Coded language used by programmers to write instructions that a computer can understand to do what the
programmer (or the computer user) wants.

classification of programming languages:
v High level programming language.

v' Low level programming language.

CLASSIFICATION OF PROGRAMMING

LANGUAGES

Programming Language

A

High-level Low-level

Language Language
| Procedural | | Non-procedural | [Problem- Machine Assembly
oriented Language Language
~— Algorithmic Functional —— Numerical
(cosoL, (uspP, ML) (MATLAB)
FORTRAN, C)
— Object Logic Based [~ Symbolic
Oriented (PROLOG) (MATHEMATICA)
(C++, JAVA,
SMALLTALK)
- Scripting = Publishing
(vB, PERL) (LATEX)

The first programming language for a computer was Plankalkiil, developed by Konrad Zuse for the Z3
between 1943 and 1945. However, it was not implemented until 1998.

Short Code, which was proposed by John Mauchly in 1949, is considered to be the first high-level
programming language.

It was designed to represent mathematical expressions in a format readable by human beings.

However, because it had to be translated into machine code before it could be executed, it had relatively
slow processing speeds.

Learn C Programming
C is a powerful general-purpose programming language.

It is fast, portable and available in all platforms.

Narsimha Reddy Engineering College NRCM

If you are new to programming, C is a good choice to start your programming journey.

What is C (Programming Language)? - The Basics
v Before getting started with C programming, lets get familiarized with the language first.

v' Cis a general-purpose programming language used for wide range of applications from Operating
systems like Windows and iOS to software that is used for creating 3D movies.

v' C programming is highly efficient. That’s the main reason why it’s very popular despite being more
than 40 years old.

v/ Standard C programs are portable. The source code written in one system works in another operating
system without any change.

v' As mentioned, it’s a good language to start learning programming. If you know C programming, you
will not just understand how your program works, but will also be able to create a mental picture on
how a computer works.

History of C programming
C is closely associated with Unix Operating system
Development of Unix System

The PDP-11 version of Unix system was written in assembly language. Assembly languages are low-level
programming languages that are specific to a particular computer architecture. They are hard to write and
understand.

The developers of Unix Operating system (including Dennis Ritchie and Stephen C. Johnson) decided to
rewrite the system in B language. However, B couldn’t suffice some of the features of PDP-11, which led to
the development of C.

In 1972, the development of C started on the PDP-11 Unix system. A large part of Unix was then rewritten
in C. By 1973, C was powerful enough to be used in Unix Kernel. Dennis Ritchie and Stephen C. Johnson
made further changes to the language for several years to make it portable in Unix Operating system.

First Book on C Programming

In 1978, the first book of C programming, The C Programming Language, was published. The first edition
of the book provided programmers informal specification of the language. Written by Brian Kernighan and
Dennis Ritchie, this book is popular among C programmers as "K&R".

ANSI C
With the rapid growth of C language for several years, it was time for language to get it standardized.

C89. The first standard of C was published by American National Standards Institute (ANSI) in 1989. This
version is commonly popular as C89.

Narsimha Reddy Engineering College NRCM

C99. In late 1990’s, several new features like inline functions, several new data types and flexible
array-members were added to the C standard. This is commonly known as C99.

C11. The C11 standard has new features like type generic macros, atomic operations, anonymous structures
that doesn’t exist in C99.

All these three standards are also known by the name of ANSI C.

“Standard C programs are portable”. This means, the programs that follow ANSI C standard are portable
among operating systems.

If you are new to programming, it’s advisable to follow the standard (ANSI C in case of C programming)
that is accepted everywhere. It will help you learn the language the way it was intended.

Features of C Programming Language
Why Should you learn C programming?

If only it were possible to answer this question with a simple “yes” or “no”. Unfortunately, it’s not an
easy question to answer and varies from person to person.

Personally speaking, I love C programming. It is a good language to start your programming journey if you
are a newbie. Even if you are an experienced programmer, | recommend you to learn it at some point; it will
certainly help.

What will you gain if you learn C?

If you don’t know C, you don’t know what you are doing as a programmer. Sure, your application works
fine and all. But, if you can’t say why while (*s++ = *p++); copies a string, you’re programming on a
superstition. (Joel Spolsky’s words, not mine).

You will understand how a computer works.

If you know C, you will not only know how your program works but, you will be able to create a
mental model on how a computer works (including memory management and allocation). You will learn to
appreciate the freedom that C provides unlike Python and Java.

Understanding C allows you to write programs that you never thought were possible before (or at the
very least, you will have a broader understanding of computer architecture and programming as a whole).

C is the lingua franca of programming.

Almost all high-level programming languages like Java, Python, JavaScript etc. can interface with C
programming. Also, it’s a good language to express common ideas in programming. Doesn’t matter if the
person you are talking with doesn’t know C, you can still convey your idea in a way they can understand.

Opportunity to work on open source projects that impact millions of people.

At first, you may overlook the fact that C is an important language. If you need to develop a mobile app,
you need Java (for Android), Swift and Objective C (for iOS). And there are dozens of languages like C#,
PHP, ASP.net, Ruby, Python for building web application. Then, where is C programming?

Narsimha Reddy Engineering College NRCM

Python is used for making wide range for applications. And, C is used for making Python. If you want
to contribute to Python, you need to know C programming to work on Python interpreter that impacts
millions of Python programmers. This is just one example. A large number of softwares that you use today
is powered by C.

Some of the larger open source projects where C programming is used are Linux Kernel, Python
Interpreter, SQLite Database.

Another language that’s commonly used for large open source project is C++. If you know C and C++,
you can contribute to large open source projects that impacts hundreds of millions of people.

You will write better programs.

To be honest, this statement may not be true all the time. However, knowing how computer works and
manage memory gives you insight on how to write efficient code in other programming languages.

You will find it much easier to learn other programming languages.

A lot of popular programming languages are based on C (and C++, considered superset of C
programming with OOP features). If you know C, you will get a head start learning C++.

Languages like C# and Java are related to C and C++. Also, the syntax of JavaScript and PHP is similar
to C.

If you know C and C++ programming, you will not have any problem switching to another language.
Reasons not to learn C programming

You can create awesome softwares without knowing C programming at all. Jeff Atwood, one of the creators
of Stackoverflow.com, apparently doesn’t know C and Stack Overflow is a really good web application.

If you are busy and don’t want to invest time on something that doesn’t have direct effect on your
day-to-day work, C programming is not for you.

Also, if you are a newbie and want to start learning programming with an easier language (C is not the
easiest of language to learn), you can start with Python.

Verdict on whether to learn C programming or not
For newbie:

For many, C programming is the best language to start learning programming. However, if you want to start
with an easier language which is clean and easier to grasp, go for Python.

For experienced programmers:
It’s not absolutely essential but there are perks of learning C programming.

Don’t leave your current project immediately (I know you won’t) to learn C. You can learn it when you have
free time and want to expand your programming skills.

I believe, it’s not necessary to learn C immediately. However, you should learn C eventually.

Narsimha Reddy Engineering College NRCM

Compile and run C programming on your OS

There are numerous compilers and text editors you can use to run C programming. These compilers and text
editors may differ from system to system.You will find the easiest way to run C programming on your
computer (Windows, Mac OS X or Linux) in this section.

Run C Programming in Windows (XP, 7, 8 and 10)

To run C Programming in Windows, download a software called Code::Blocks. Then, write C code, save the
file with .c extension and execute the code.

To make this procedure even easier, follow this step by step guide.
Go to the binary release download page of Code:Blocks official site.

Under Windows XP / Vista/ 7 / 8.x / 10 section, click the link with mingw-setup (highlighted row)
either from Sourceforge.net or FossHub.

Download Code::Blocks in Windows

Open the Code::Blocks Setup file and follow the instructions (Next > | agree > Next > Install); you
don’t need to change anything. This installs the Code::Blocks with gnu gcc compiler, which is the best
compiler to start with for beginners.

Now, open Code::Blocks and go to File > New > Empty file (Shortcut: Ctrl + Shift + N)
Create empty file in Codeblocks
Write the C code and save the file with .c extension. To save the file, go to File > Save (Shortcut: Ctrl + S).
Important: The filename should end with a .c extension, like: hello.c, your-program-name.c
Create file with .c extension in Codeblocks to run C programming

To run the program, go to Build > Build and Run (Shortcut: F9). This will build the executable file and
run it.

If your program doesn’t run and if you see error message "can't find compiler executable in your search
path(GNU GCC compiler)"”, go to Settings > Compiler > Toolchain executables and click Auto-detect. This
should solve the issue in most cases.

The fun begins: Your first C program
You will learn to write a “Hello, World!” program in this section.
Why “Hello, World!” program?

“Hello, World!” is a simple program that displays “Hello, World!” on the screen. Since, it’s a very simple
program, it is used to illustrate the basic syntax of any programming language.

This program is often used to introduce programming language to a beginner. So, let’s get started.

#include <stdio.h>

Narsimha Reddy Engineering College NRCM

int main()

{
printf(*"Hello, World\n");

return O;

How “Hello, World!” program works?
Include stdio.h header file in your program.

C programming is small and cannot do much by itself. You need to use libraries that are necessary to run the
program. The stdio.h is a header file and C compiler knows the location of that file. To use the file, you need
to include it in your program using #include preprocessor.

Why do you need stdio.h file in this program?

In this program, we have used printf() function which displays the text inside the quotation mark. Since
printf() is defined in stdio.h, you need to include stdio.h.

The main() function

In C programming, the code execution begins from the start of main() function (doesn’t matter if main()
isn’t located at the beginning).

The code inside the curly braces { } is the body of main() function. The main() function is mandatory in
every C program.

int main() {

ks

This program doesn’t do anything but, it’s a valid C program.
The printf() function

The printf() is a library function that sends formatted output to the screen (displays the string inside the
quotation mark). Notice the semicolon at the end of the statement.

In our program, it displays Hello, World! on the screen.

Remember, you need to include stdio.h file in your program for this to work.

Narsimha Reddy Engineering College NRCM

The return statement

The return statement return 0; inside the main() function ends the program. This statement isn’t mandatory.
However, it’s considered good programming practice to use it.
Key notes to take away

v
v
v

All C program starts from the main() function and it’s mandatory.

You can use the required header file that’s necessary in the program.

For example: To use sqrt() function to calculate square root and pow() function to find power of a
number, you need to include math.h header file in your program.

C is case-sensitive; the use of uppercase letter and lowercase letter have different meanings.

The C program ends when the program encounters the return statement inside the main() function.
However, return statement inside the main function is not mandatory.

The statement in a C program ends with a semicolon.

Always follow good programming practice

v

v

Good programming practice are the informal rules which can improve quality and decrease
development time of the software.

Some of the programming practices mentioned here are valid in all programming languages whereas
some are valid only for C programming.

Be consistent with the formatting.
The number of spaces you use in the program doesn’t matter in C. However, that doesn’t mean you
should use different number of spaces at different places. Also, use proper indentation so that the code is

easier to understand.

Use one statement per line.

What’s wrong with the following code?

int count;
float squareRoot = 10.0;
printf(““Square root = %f”, squareRoot);

Actually, the code is perfectly valid. But, wouldn’t this be better:

int count;
float squareRoot = 10.0;
printf(“Square root = %f”, squareRoot);

The goal here is to write code that your fellow programmers can understand.

Naming convention and Consistency!

Narsimha Reddy Engineering College NRCM

Give a proper name to variables and functions and be consistent with it.

int a, b;

Here, a and b are two variables and | have no idea what they do. Instead you can choose name like:
int counter, power;

Also, follow a convention while naming. For example:

int base_number, powerNumber;

Both conventions: using _ to separate words and using capital letter after first word is popular. However,
don’t use both in one program; choose one and be consistent with it.

Start Habit of Using Comments
Comments are part of code that compiler ignores.

You can use comments in your program to explain what you are trying to achieve in your program. This
helps your fellow programmer to understand the code.

You can use comments in C programming by using //. For example:

/I My first C program

#include <stdio.h>

int main()

{
printf("Hello, World"\n™); ~ // displays Hello, World! on the screen

return O;

“Commenting your code is like cleaning your bathroom - you never want to do it, but it really does
create a more pleasant experience for you and your guests.”

— Ryan Campbell
C Programming Keywords and Identifiers

Reserved words in C programming that are part of the syntax. Also, you will learn about identifiers and
proper way to name a variable.

Character set

Narsimha Reddy Engineering College NRCM

Character set is a set of alphabets, letters and some special characters that are valid in C language.

Alphabets
Uppercase: ABC ...cooovevveiiieiieiieeies XYZ
Lowercase: ab C...cocoovvvviiiiciccccee Xyz

C accepts both lowercase and uppercase alphabets as variables and functions.
Digits

0123456789

Special Characters

Special Characters in C Programming
, < > _
()) $
% [] # ?
1 & { } "
A] * /
- \ ~ +

White space Characters
blank space, new line, horizontal tab, carriage return and form feed
C Keywords

Keywords are predefined, reserved words used in programming that have special meanings to the compiler.
Keywords are part of the syntax and they cannot be used as an identifier. For example:

int money;
Here, int is a keyword that indicates ‘'money’ is a variable of type integer.

As C is a case sensitive language, all keywords must be written in lowercase. Here is a list of all keywords
allowed in ANSI C.

Keywords in C Language

Narsimha Reddy Engineering College NRCM

auto double Int struct

break else Long switch
case enum register typedef
char extern Return union
continue for Signed void

do if static while
default goto Sizeof volatile
const float short unsigned

Along with these keywords, C supports other numerous keywords depending upon the compiler..
C ldentifiers
Identifier refers to name given to entities such as variables, functions, structures etc.

Identifier must be unique. They are created to give unique name to a entity to identify it during the execution
of the program. For example:

int money;

double accountBalance;
Here, money and accountBalance are identifiers.

Also remember, identifier names must be different from keywords. You cannot use int as an identifier
because int is a keyword.

Rules for writing an identifier

1. A valid identifier can have letters (both uppercase and lowercase letters), digits and underscores.

2. The first letter of an identifier should be either a letter or an underscore. However, it is discouraged
to start an identifier name with an underscore.

3. Thereis no rule on length of an identifier. However, the first 31 characters of identifiers
are discriminated by the compiler.

Variables

In programming, a variable is a container (storage area) to hold data.

Narsimha Reddy Engineering College NRCM

To indicate the storage area, each variable should be given a unique name (identifier). Variable names are
just the symbolic representation of a memory location. For example:

int playerScore = 95;

Here, playerScore is a variable of integer type. The variable is assigned value: 95.
The value of a variable can be changed, hence the name ‘variable'.

In C programming, you have to declare a variable before you can use it.

Rules for naming a variable in C

1. A variable name can have letters (both uppercase and lowercase letters), digits and underscore only.

2. The first letter of a variable should be either a letter or an underscore. However, it is discouraged to
start variable name with an underscore. It is because variable name that starts with an underscore can
conflict with system name and may cause error.

3. There is no rule on how long a variable can be. However, only the first 31 characters of a variable are
checked by the compiler. So, the first 31 letters of two variables in a program should be different.

C is a strongly typed language. What this means it that, the type of a variable cannot be changed.

Constants/Literals: A constant is a value or an identifier whose value cannot be altered in a program. For
example: 1, 2.5, "C programming is easy", etc.

As mentioned, an identifier also can be defined as a constant.

const double Pl = 3.14

Here, P1 is a constant. Basically what it means is that, Pl and 3.14 is same for this program.
Below are the different types of constants you can use in C.

1. Integer constants

An integer constant is a numeric constant (associated with number) without any fractional or exponential
part. There are three types of integer constants in C programming:

o decimal constant(base 10)
e octal constant(base 8)
o hexadecimal constant(base 16)

For example:

Decimal constants: 0, -9, 22 etc

Octal constants: 021, 077, 033 etc
Hexadecimal constants: 0x7f, 0x2a, 0x521 etc

In C programming, octal constant starts with a 0 and hexadecimal constant starts with a 0x.
Narsimha Reddy Engineering College NRCM

2. Floating-point constants

A floating point constant is a numeric constant that has either a fractional form or an exponent form. For
example:

-2.0
0.0000234

-0.22E-5

3. Character constants

A character constant is a constant which uses single quotation around characters. For example: ‘a', 'l', 'm', 'F'
4. Escape Sequences

Sometimes, it is necessary to use characters which cannot be typed or has special meaning in C
programming. For example: newline(enter), tab, question mark etc. In order to use these characters, escape
sequence is used.

For example: \n is used for newline. The backslash (\) causes "escape™ from the normal way the characters
are interpreted by the compiler.

Escape Sequences Character

\b Backspace

\f Form feed

\n Newline

\r Return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\' Single quotation mark
\" Double guotation mark
\? Question mark

Narsimha Reddy Engineering College NRCM

Escape Sequences Character

\0 Null character

5. String constants
String constants are the constants which are enclosed in a pair of double-quote marks. For example:

"good" /[string constant

/Inull string constant
/Istring constant of six white space
/[string constant having single character.

"Earth is round\n" /lprints string with newline.

6. Enumeration constants

Keyword enum is used to define enumeration types. For example:
enum color {yellow, green, black, white};

Here, color is a variable and yellow, green, black and white are the enumeration constants having value 0, 1,
2 and 3 respectively.

C Programming Data Types

In C programming, variables or memory locations should be declared before it can be used. Similarly, a
function also needs to be declared before use.

Data types simply refers to the type and size of data associated with variables and functions.
Data types in C

Fundamental Data Types

v' Integer types

v" Floating type

v' Character type

Derived Data Types

v Arrays

v Pointers

Narsimha Reddy Engineering College NRCM

v" Structures
v Enumeration
Int - Integer data types

Integers are whole numbers that can have both positive and negative values but no decimal values. Example:
0,-5,10

In C programming, keyword int is used for declaring integer variable. For example:
int id;

Here, id is a variable of type integer.

You can declare multiple variable at once in C programming. For example:

int id, age;

The size of int is either 2 bytes(In older PC's) or 4 bytes. If you consider an integer having size of 4
byte(equal to 32 bits), it can take 232 distinct states as: -231,-231+1, ...,-2,-1,0, 1, 2, ..., 231-2, 231-1

Similarly, int of 2 bytes, it can take 216 distinct states from -215 to 215-1. If you try to store larger number
than 231-1, i.e,+2147483647 and smaller number than -231, i.e, -2147483648, program will not run
correctly.

float - Floating types

Floating type variables can hold real numbers such as: 2.34, -9.382, 5.0 etc. You can declare a floating point
variable in C by using either float or double keyword. For example:

float accountBalance;

double bookPrice;

Here, both accountBalance and bookPrice are floating type variables.

In C, floating values can be represented in exponential form as well. For example:
float normalizationFactor = 22.442¢2,;

Difference between float and double

The size of float (single precision float data type) is 4 bytes. And the size of double (double precision float
data type) is 8 bytes. Floating point variables has a precision of 6 digits whereas the precision of double is
14 digits.

char - Character types

Keyword char is used for declaring character type variables. For example:

Narsimha Reddy Engineering College NRCM

char test ='h’;

Here, test is a character variable. The value of test is 'h'.

The size of character variable is 1 byte.

C Qualifiers

Qualifiers alters the meaning of base data types to yield a new data type.

Size qualifiers

Size qualifiers alters the size of a basic type. There are two size qualifiers, long and short. For example:
long double i;

The size of double is 8 bytes. However, when long keyword is used, that variable becomes 10 bytes.
Learn more about long keyword in C programming.

There is another keyword short which can be used if you previously know the value of a variable will
always be a small number.

Sign qualifiers

Integers and floating point variables can hold both negative and positive values. However, if a variable
needs to hold positive value only, unsigned data types are used. For example:

/l unsigned variables cannot hold negative value

unsigned int positivelnteger;

There is another qualifier signed which can hold both negative and positive only. However, it is not
necessary to define variable signed since a variable is signed by default.

An integer variable of 4 bytes can hold data from -231 to 231-1. However, if the variable is defined as
unsigned, it can hold data from 0 to 232-1.

It is important to note that, sign qualifiers can be applied to int and char types only.
Constant qualifiers

An identifier can be declared as a constant. To do so const keyword is used.
const int cost = 20;

The value of cost cannot be changed in the program.
Volatile qualifiers

A variable should be declared volatile whenever its value can be changed by some external sources outside
the program. Keyword volatile is used for creating volatile variables.

Narsimha Reddy Engineering College NRCM

C Programming Input Output (1/O): printf() and scanf()
C programming has several in-built library functions to perform input and output tasks.
Two commonly used functions for 1/0 (Input/Output) are printf() and scanf().

The scanf() function reads formatted input from standard input (keyboard) whereas the printf() function
sends formatted output to the standard output (screen).

Example #1: C Output

#include <stdio.h> /IThis is needed to run printf() function.int main(){
printf("C Programming"); //displays the content inside quotation
return 0;}

Output:C Programming
How this program works?

o All valid C program must contain the main() function. The code execution begins from the start of
main() function.

e The printf() is a library function to send formatted output to the screen. The printf() function is
declared in "stdio.h™ header file.

o Here, stdio.h is a header file (standard input output header file) and #include is a preprocessor
directive to paste the code from the header file when necessary. When the compiler encounters
printf() function and doesn't find stdio.h header file, compiler shows error.

e The return O; statement is the "EXxit status" of the program. In simple terms, program ends.

Example #2: C Integer Output
#include <stdio.h>int main(){

int testinteger = 5;

printf("Number = %d", testinteger);

return 0;}
Output
Number =5

Inside the quotation of printf() function, there is a format string "%d" (for integer). If the format string
matches the argument (testinteger in this case), it is displayed on the screen.

Example #3: C Integer Input/Output
#include <stdio.h>int main(){
int testinteger;
printf("Enter an integer: ");
scanf("%d",&testInteger);
printf("Number = %d" testinteger);
return 0;}

Output
Enter an integer: 4

Narsimha Reddy Engineering College NRCM

https://www.programiz.com/c-programming/library-function

Number = 4

The scanf() function reads formatted input from the keyboard. When user enters an integer, it is stored in
variable testInteger.

Note the '&' sign before testinteger; &testinteger gets the address of testinteger and the value is stored in
that address.

Example #3: C Floats Input/Output
#include <stdio.h>int main(){
float f;
printf("Enter a number: ");// %f format string is used in case of floats
scanf("%f",&f);
printf("Value = %f", f);
return 0;}

Output
Enter a number: 23.45
Value = 23.450000

The format string "%f" is used to read and display formatted in case of floats.

Example #4: C Character 1/0
#include <stdio.h>int main(){
char chr;
printf("Enter a character: ");
scanf("%c",&chr);
printf(*"You entered %c.",chr);
return 0;}

Output
Enter a character: g
You entered g.

Format string %c is used in case of character types.
Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored. Instead, a numeric
value(ASCII value) is stored.

And when we displayed that value using "%c" text format, the entered character is displayed.

Example #5: C ASCII Code
#include <stdio.h>int main(){
char chr;
printf("Enter a character: ™);

Narsimha Reddy Engineering College NRCM

scanf("%c",&chr);

/' When %oc text format is used, character is displayed in case of character types
printf(*"You entered %c.\n",chr);

/' When %d text format is used, integer is displayed in case of character types
printf("ASCII value of %c is %d.", chr, chr);
return 0;}

Output

Enter a character: g

You entered g.

ASCII value of g is 103.

The ASCII value of character 'g' is 103. When, 'g' is entered, 103 is stored in variable varl instead of g.

You can display a character if you know ASCII code of that character. This is shown by following example.

Example #6: C ASCII Code

#include <stdio.h>int main(){
int chr = 69;
printf("Character having ASCII value 69 is %c.",chr);
return 0;}

Output
Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and floats can be displayed in different formats in C programming.

Example #7: 1/O of Floats and Integers
#include <stdio.h>int main(){

int integer = 9876;
float decimal = 987.6543;

/I Prints the number right justified within 6 columns
printf("4 digit integer right justified to 6 column: %6d\n", integer);

I Tries to print number right justified to 3 digits but the number is not right adjusted because there are

only 4 numbers
printf("4 digit integer right justified to 3 column: %3d\n", integer);

Narsimha Reddy Engineering College NRCM

/I Rounds to two digit places
printf("Floating point number rounded to 2 digits: %.2f\n",decimal);

// Rounds to 0 digit places
printf("Floating point number rounded to 0 digits: %.f\n",987.6543);

I/ Prints the number in exponential notation(scientific notation)
printf("Floating point number in exponential form: %e\n™,987.6543);
return 0;}

Output

4 digit integer right justified to 6 column: 9876

4 digit integer right justified to 3 column: 9876

Floating point number rounded to 2 digits: 987.65
Floating point number rounded to 0 digits: 988

Floating point number in exponential form: 9.876543e+02

C Programming Input Output (1/0): printf() and scanf()
There are two in-built functions printf() and scanf() to perform 1/0O task in C programming. Also, you will
learn to write a valid program in C.

C programming has several in-built library functions to perform input and output tasks.
Two commonly used functions for 1/0 (Input/Output) are printf() and scanf().

The scanf() function reads formatted input from standard input (keyboard) whereas the printf() function
sends formatted output to the standard output (screen).

Example #1: C Output

#include <stdio.h> /[This is needed to run printf() function.int main(){
printf("C Programming™); //displays the content inside quotation
return 0;}

Output

C Programming
How this program works?

o All valid C program must contain the main() function. The code execution begins from the start of
main() function.

e The printf() is a library function to send formatted output to the screen. The printf() function is
declared in "stdio.h" header file.

e Here, stdio.h is a header file (standard input output header file) and #include is a preprocessor
directive to paste the code from the header file when necessary. When the compiler encounters
printf() function and doesn't find stdio.h header file, compiler shows error.

e The return O; statement is the "EXxit status™ of the program. In simple terms, program ends.

Narsimha Reddy Engineering College NRCM

https://www.programiz.com/c-programming/library-function

Example #2: C Integer Output
#include <stdio.h>int main(){

int testinteger = 5;

printf(""Number = %d", testinteger);

return 0;}
Output
Number =5

Inside the quotation of printf() function, there is a format string "%d" (for integer). If the format string
matches the argument (testinteger in this case), it is displayed on the screen.

Example #3: C Integer Input/Output
#include <stdio.h>int main(){
int testinteger;
printf("Enter an integer: ");
scanf("%d",&testInteger);
printf(""Number = %d" testinteger);
return 0;}

Output
Enter an integer: 4
Number =4

The scanf() function reads formatted input from the keyboard. When user enters an integer, it is stored in
variable testInteger.

Note the '&' sign before testinteger; &testinteger gets the address of testinteger and the value is stored in
that address.

Example #3: C Floats Input/Output
#include <stdio.h>int main(){
float f;
printf("Enter a number: ");// %f format string is used in case of floats
scanf("%f",&f);
printf("Value = %f", f);
return 0;}

Output
Enter a number; 23.45
Value = 23.450000

The format string "%f" is used to read and display formatted in case of floats.

Example #4: C Character 1/0
#include <stdio.h>int main(){
char chr;

Narsimha Reddy Engineering College NRCM

printf("Enter a character: ");
scanf("%c",&chr);
printf(*"You entered %c.",chr);
return 0;}

Output
Enter a character: g
You entered g.

Format string %c is used in case of character types.
Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored. Instead, a numeric
value(ASCII value) is stored.

And when we displayed that value using "%c" text format, the entered character is displayed.

Example #5: C ASCII Code
#include <stdio.h>int main(){
char chr;
printf("Enter a character: ");
scanf("%c",&chr);

/' When %oc text format is used, character is displayed in case of character types
printf(*"You entered %c.\n",chr);

/' When %d text format is used, integer is displayed in case of character types
printf("ASCII value of %c is %d.", chr, chr);
return 0;}

Output

Enter a character: g

You entered g.
ASCII value of g is 103.
The ASCII value of character 'g' is 103. When, 'g' is entered, 103 is stored in variable varl instead of g.

You can display a character if you know ASCII code of that character. This is shown by following example.

Example #6: C ASCII Code

#include <stdio.h>int main(){
int chr = 69;
printf("Character having ASCII value 69 is %c.",chr);
return 0;}

Output
Narsimha Reddy Engineering College NRCM

Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and floats can be displayed in different formats in C programming.

Example #7: 1/O of Floats and Integers
#include <stdio.h>int main(){

int integer = 9876;
float decimal = 987.6543;

/I Prints the number right justified within 6 columns
printf("'4 digit integer right justified to 6 column: %6d\n", integer);

Il Tries to print number right justified to 3 digits but the number is not right adjusted because there are

only 4 numbers
printf("4 digit integer right justified to 3 column: %3d\n", integer);

// Rounds to two digit places
printf("Floating point number rounded to 2 digits: %.2f\n",decimal);

// Rounds to 0 digit places
printf("Floating point number rounded to 0 digits: %.f\n",987.6543);

I/ Prints the number in exponential notation(scientific notation)
printf(""Floating point number in exponential form: %e\n",987.6543);
return 0;}

Output

4 digit integer right justified to 6 column: 9876

4 digit integer right justified to 3 column: 9876

Floating point number rounded to 2 digits: 987.65
Floating point number rounded to 0 digits: 988

Floating point number in exponential form: 9.876543e+02

C Preprocessor and Macros

In this article, you will be introduced to ¢ preprocessors and you will learn to use #include, #define and

conditional compilation.

Narsimha Reddy Engineering College

NRCM

The C preprocessor is a macro preprocessor (allows you to define macros) that transforms your program
before it is compiled. These transformations can be inclusion of header file, macro Hf expansions etc.

All preprocessing directives begins with a # symbol. For example,
#define P1 3.14

Some of the common uses of C preprocessor are:
Include header files

Macros
Conditional Compilation

Diagnostics
Line Control

Pragmas
Other Directives

Preprocessor Output

Including Header Files

The #include preprocessor is used to include header files to a C program. For example,
#include <stdio.h>

Here, "stdio.h" is a header file. The #include preprocessor directive replaces the above line with the contents
of stdio.h header file which contains function and macro definitions.

That's the reason why you need to use #include <stdio.h> before you can use functions like scanf() and
printf().

You can also create your own header file containing function declaration and include it in your program
using this preprocessor directive.
#include "my_header.h"

Macros using #define
You can define a macro in C using #define preprocessor directive.

A macro is a fragment of code that is given a name. You can use that fragment of code in your program by
using the name. For example,

#define ¢ 299792458 // speed of light

Here, when we use ¢ in our program, it's replaced by 3.1415.

Example 1: Using #define preprocessor

Narsimha Reddy Engineering College NRCM

https://www.programiz.com/c-programming/c-preprocessor-macros#header-files
https://www.programiz.com/c-programming/c-preprocessor-macros#macros
https://www.programiz.com/c-programming/c-preprocessor-macros#conditional
https://gcc.gnu.org/onlinedocs/cpp/Diagnostics.html#Diagnostics
https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html#Line-Control
https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html#Pragmas
https://gcc.gnu.org/onlinedocs/cpp/Other-Directives.html#Other-Directives
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html#Preprocessor-Output

#include <stdio.h>#define Pl 3.1415
int main(){
float radius, area;
printf("Enter the radius: ");
scanf("%d", &radius);
/I Notice, the use of Pl
area = PI*radius*radius;
printf("Area=%.2f" area);

return 0;}

You can also define macros that works like a function call, known as function-like macros. For example,

#define circleArea(r) (3.1415*r*r)

Every time the program encounters circleArea(argument), it is replaced by
(3.1415*(argument)*(argument)).

Suppose, we passed 5 as an argument then, it expands as below:
circleArea(5) expands to (3.1415*5*5)
Example 2: Using #define preprocessor

#include <stdio.h>#define Pl 3.1415#define circleArea(r) (PI*r*r)

int main()

{
int radius;
float area;

printf("Enter the radius: ");
scanf("%d", &radius);
area = circleArea(radius);

printf("Area = %.2f", area);

return O;
Narsimha Reddy Engineering College

NRCM

¥

Conditional Compilation

In C programming, you can instruct preprocessor whether to include certain chuck of code or not. To do so,
conditional directives can be used.

It's similar like a if statement. However, there is a big difference you need to understand.

The if statement is tested during the execution time to check whether a block of code should be executed or
not whereas, the conditionals is used to include (or skip) certain chucks of code in your program before
execution.

Uses of Conditional

« use different code depending on the machine, operating system
« compile same source file in two different programs
« to exclude certain code from the program but to keep it as reference for future purpose

How to use conditional?
To use conditional, #ifdef, #if, #defined, #else and #elseif directives are used.
#ifdef Directive

#ifdef MACRO
conditional codes

#endif
Here, the conditional codes are included in the program only if MACRO is defined.
#if, #elif and #else Directive

#if expression
conditional codes

#endif

Narsimha Reddy Engineering College NRCM

Here, expression is a expression of integer type (can be integers, characters, arithmetic expression, macros
and so on). The conditional codes are included in the program only if the expression is evaluated to a
non-zero value.

The optional #else directive can used with #if directive.

#if expression

conditional codes if expression is non-zero
#else

conditional if expression is O

#endif
You can also add nested conditional to your #if...#else using #elif

#if expression
conditional codes if expression is non-zero
#elif expressionl
conditional codes if expression is non-zero
#elif expression2

conditional codes if expression is non-zero

else
conditional if all expressions are 0

#endif
#defined

The special operator #defined is used to test whether certain macro is defined or not. It's often used with #if
directive.

#if defined BUFFER_SIZE && BUFFER_SIZE >= 2048

conditional codes
Predefined Macros

There are some predefined macros which are readily for use in C programming.

Narsimha Reddy Engineering College NRCM

Predefined macro Value

~ DATE__ String containing the current date

__FILE__ String containing the file name

_LINE__ Integer representing the current line number

~_STDC __ If follows ANSI standard C, then value is a nonzero integer
__TIME__ String containing the current date.

Example #3: predefined Macros
C Program to find the current time

#include <stdio.h>int main(){

printf("Current time: %s", TIME__); //calculate the current time}
Output

Current time: 19:54:39

C Standard Library Functions

In this article, you'll learn about the standard library functions in C. More specifically, what are they,
different library functions in C and how to use them in your program.

C Standard library functions or simply C Library functions are inbuilt functions in C programming.

The prototype and data definitions of the functions are present in their respective header files, and must be
included in your program to access them.

For example: If you want to use printf() function, the header file <stdio.h> should be included.

#include <stdio.h>int main(){
/I'1f you use printf() function without including the <stdio.h>
/I header file, this program will show an error.

printf("Catch me if you can."); }

Narsimha Reddy Engineering College NRCM

https://www.programiz.com/c-programming/c-functions

There is at least one function in any C program, i.e., the main() function (which is also a library function).
This function is automatically called when your program starts.

Advantages of using C library functions

There are many library functions available in C programming to help you write a good and efficient program.
But, why should you use it?

Below are the 4 most important advantages of using standary library functions.

1. They work

One of the most important reasons you should use library functions is simply because they work.
These functions have gone through multiple rigorous testing and are easy to use.

2. The functions are optimized for performance

Since, the functions are "standard library" functions, a dedicated group of developers constantly make them
better.

In the process, they are able to create the most efficient code optimized for maximum performance.
3. It saves considerable development time

Since the general functions like printing to a screen, calculating the square root, and many more are already
written. You shouldn't worry about creating them once again.

It saves valuable time and your code may not always be the most efficient.

3. The functions are portable

With ever changing real world needs, your application is expected to work every time, everywhere.
And, these library functions help you in that they do the same thing on every computer.

This saves time, effort and makes your program portable.

Use Of Library Function To Find Square root

However, in C programming you can find the square root by just using sgrt() function which is defined
under header file "math.h"

#include <stdio.h>#include <math.h>int main(){
float num, root;

printf("Enter a number:);

Narsimha Reddy Engineering College NRCM

scanf("%f", &num);

/I Computes the square root of num and stores in root.

root = sqrt(num);
printf("Square root of %.2f = %.2f", num, root);

return 0;}
When you run the program, the output will be:

Enter a number: 12

Square root of 12.00 = 3.46

C Library Functions Under Different Header File

C Header Files

<assert.h> Program assertion functions
<ctype.h> Character type functions
<locale.h> Localization functions
<math.h> Mathematics functions
<setjmp.h> Jump functions

<signal.h> Signal handling functions
<stdarg.h> Variable arguments handling functions
<stdio.h> Standard Input/Output functions
<stdlib.h> Standard Utility functions
<string.h> String handling functions

<time.h> Date time functions

Narsimha Reddy Engineering College

NRCM

Operators:
C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction and multiplication on
numerical values (constants and variables).

Operator Meaning of Operator
+ addition or unary plus

- subtraction or unary minus

* multiplication
/ division
% remainder after division(modulo division)

Example #1: Arithmetic Operators

/I C Program to demonstrate the working of arithmetic operators#include <stdio.h>int main(){

inta=9b=4,c;

c =a+b;

printf(a+b = %d \n",c);

c = a-b;

printf("a-b = %d \n",c);

c = a*b;

printf("a*b = %d \n",c);

Narsimha Reddy Engineering College NRCM

c=a/b;
printf(*a/b = %d \n",c);

c=a%b:;

printf("Remainder when a divided by b = %d \n",c);

return 0;}
Output
ath =13
a-b=5
a*b =36
alb=2
Remainder when a divided by b=1

The operators +, - and * computes addition, subtraction and multiplication respectively as you might have
expected.

In normal calculation, 9/4 = 2.25. However, the output is 2 in the program.

It is because both variables a and b are integers. Hence, the output is also an integer. The compiler neglects
the term after decimal point and shows answer 2 instead of 2.25.

The modulo operator % computes the remainder. When a = 9 is divided by b = 4, the remainder is 1. The %
operator can only be used with integers.

Suppose a=5.0,b=2.0,c=5and d = 2. Then in C programming,

a/b =25 // Because both operands are floating-point variables
a/d = 2.5 [/ Because one operand is floating-point variable
c/b =25 // Because one operand is floating-point variable

c/d=2 // Because both operands are integers

Increment and decrement operators

C programming has two operators increment ++ and decrement -- to change the value of an operand
(constant or variable) by 1.

Narsimha Reddy Engineering College NRCM

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These two operators
are unary operators, meaning they only operate on a single operand.

Example #2: Increment and Decrement Operators

/I C Program to demonstrate the working of increment and decrement operators#include <stdio.h>int

main(){
inta=10, b =100;
float c = 10.5, d = 100.5;

printf("++a = %d \n", ++a);

printf(*--b = %d \n", --b);

printf("++c = %f \n", ++c);

printf("--d = %f \n", --d);

return 0;}
Output

++a =11
--b=99
++c = 11.500000

++d = 99.500000

Here, the operators ++ and -- are used as prefix. These two operators can also be used as postfix like a++
and a--. Visit this page to learn more on how increment and decrement operators work when used as postfix.

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common assignment operator is

Narsimha Reddy Engineering College NRCM

Exampl
Operator P

Same as
= a=b a=b
+= a+=b a=atb

= a=b a=a*b
/= al=b Ja=alb
%= a%=b |a=a%b

Example #3: Assignment Operators

/I C Program to demonstrate the working of assignment operators#include <stdio.h>int main(){

inta=>5,c;

C=a,

printf('c = %d \n", c);

c+=a;//c=c+a

printf(c = %d \n", c);

c-=a /lc=c-a

printf(c = %d \n", c);

c*=a;//lc=c*a

printf("c = %d \n", c);

c/=allc=cla

printf(c = %d \n", c);

Narsimha Reddy Engineering College

NRCM

c%=a;//c=c%a

printf(c = %d \n", c);

return 0;}

Output

C Relational Operators

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the
relation is false, it returns value 0.

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example
== Equal to 5==3returns 0
> Greater than 5> 3returns 1
< Less than 5<3returns 0
I= Not equal to 51=3returns 1
>= Greater than or equal to 5>=3returns 1
<= Less than or equal to 5<=3return0

Example #4: Relational Operators
/I C Program to demonstrate the working of arithmetic operators#include <stdio.h>int main(){
inta=5,b=5,c=10;
printf("%d == %d = %d \n", a, b, a == b); // true
printf("%d == %d = %d \n", a, ¢, a == c); // false
printf("%d > %d = %d \n", a, b, a > b); //false
printf(*%d > %d = %d \n", a, c, a > c); //false
Narsimha Reddy Engineering College NRCM

printf("%d < %d = %d \n", a, b, a < b); //false
printf("%d < %d = %d \n", a, c, a < c); //true
printf("%d != %d = %d \n", a, b, a = b); //false
printf(*%d != %d = %d \n", a, ¢, a !=c); //true
printf("%d >= %d = %d \n", a, b, a >=b); //true
printf(*%d >= %d = %d \n", a, ¢, a >= c); //false
printf("%d <= %d = %d \n", a, b, a <= b); //true
printf(*%d <= %d = %d \n", a, ¢, a <= ¢); //true

return 0;}
Output

5==5=1
5==10=0
5>5=0

5>10=0
5<5=0

5<10=1
51=5=0
51=10=1
5>=5=1
5>=10=0
5<=5=1
5<=10=1

C Logical Operators

An expression containing logical operator returns either 0 or 1 depending upon whether expression results
true or false. Logical operators are commonly used in decision making in C programming.

Operator Meaning of Operator

Logial AND. True only if all

&&
operands are true.

Logical OR. True only if
either one operand is true

Narsimha Reddy Engineering College

Example

If c =5 and d = 2 then, expression ((c ==
5) && (d > 5)) equals to 0.

If c =5 and d = 2 then, expression ((c ==
5) || (d > 5)) equals to 1.

NRCM

Operator Meaning of Operator Example

Logical NOT. True only if the |If ¢ =5 then, expression ! (c == 5) equals
operand is 0 to 0.

Example #5: Logical Operators

/I C Program to demonstrate the working of logical operators
#include <stdio.h>int main(){

inta=5,b=25, c=10, result;

result = (a = b) && (c > b);

printf("(a = b) && (c > b) equals to %d \n", result);

result = (a = b) && (c < b);

printf(*(a = b) && (¢ < b) equals to %d \n", result);

result = (a=b) || (c <b);

printf(*(a = b) || (c < b) equals to %d \n", result);
result = (a'!'=b) || (c < b);

printf("(a = b) || (c < b) equals to %d \n", result);
result = !(a != b);

printf("!(a == b) equals to %d \n", result);

result = !(a == b);

printf("!(a == b) equals to %d \n", result);

return 0;}

Output

(a=b) && (c >b)equalsto 1
(a=b) && (c<b)equalsto 0

(@=b)||(c<b)equalsto 1l

Narsimha Reddy Engineering College

NRCM

(@'=b)|| (c<b)equalsto 0
I(a'=b)equalsto 1

I(a==Db)equalsto 0

Explanation of logical operator program

e (a=b)&& (c>5) evaluates to 1 because both operands (a = b) and (c > b) is 1 (true).
e (a=b)&& (c <b)evaluates to 0 because operand (c < b) is 0 (false).

e (a=Db)]|| (c<b)evaluates to 1 because (a =b) is 1 (true).

e (al!=Db) | (c <b)evaluates to 0 because both operand (a !=b) and (c < b) are 0 (false).
e I(a!=b) evaluates to 1 because operand (a !=b) is O (false). Hence, !(a !=b) is 1 (true).
o I(a==D) evaluates to 0 because (a == D) is 1 (true). Hence, !(a ==b) is O (false).

Bitwise Operators

During computation, mathematical operations like: addition, subtraction, addition and division are converted
to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Operators | Meaning of operators

& Bitwise AND
| Bitwise OR
N Bitwise exclusive OR

~ Bitwise complement

<< Shift left
>> Shift right
Other Operators

Comma Operator

Comma operators are used to link related expressions together. For example:
inta,c=5,d;

The sizeof operator

The sizeof is an unary operator which returns the size of data (constant, variables, array, structure etc).

Narsimha Reddy Engineering College NRCM

Example #6: sizeof Operator

#include <stdio.h>int main(){
int a, e[10];
float b;
double c;
char d;
printf("Size of int=%lu bytes\n",sizeof(a));
printf("Size of float=%lu bytes\n",sizeof(b));
printf("Size of double=%Ilu bytes\n",sizeof(c));
printf("Size of char=%Ilu byte\n" sizeof(d));
printf("Size of integer type array having 10 elements = %Ilu bytes\n", sizeof(e));

return 0;}
Output

Size of int = 4 bytes
Size of float = 4 bytes
Size of double = 8 bytes
Size of char = 1 byte

Size of integer type array having 10 elements = 40 bytes

C-Ternary Operator (?:)

A conditional operator is a ternary operator, that is, it works on 3 operands.
Conditional Operator Syntax

conditional Expression ? expressionl : expression2

The conditional operator works as follows:

« The first expression conditionalExpression is evaluated at first. This expression evaluates to 1 if it's
and evaluates to O if it's false.

Narsimha Reddy Engineering College NRCM

« If conditionalExpression is true, expressionl is evaluated.
« If conditionalExpression is false, expression2 is evaluated.

Example #7: C conditional Operator

#include <stdio.h>int main(){
char February;
int days;
printf("If this year is leap year, enter 1. If not enter any integer: ");
scanf("%c",&February);
/I If test condition (February =="I') is true, days equal to 29.
/I If test condition (February =='I") is false, days equal to 28.
days = (February =="1") ? 29 : 28;
printf(""Number of days in February = %d",days);

return 0;}
Output

If this year is leap year, enter 1. If not enter any integer: 1

Number of days in February = 29

Other operators such as & (reference operator), * (dereference operator) and -> (member selection) operator
will be discussed in C pointers.

C if, if...else and Nested if...else Statement

Decision making is used to specify the order in which statements are executed. In this tutorial, you will learn
to create decisions using different forms of if...else statement.

C if statement

if (testExpression)

{

/I statements
}

The if statement evaluates the test expression inside parenthesis.

If test expression is evaluated to true (nonzero), statements inside the body of if is executed.

Narsimha Reddy Engineering College NRCM

If test expression is evaluated to false (0), statements inside the body of if is skipped.

To learn more on when test expression is evaluated to nonzero (true) and 0 (false), check out relational and
logical operators.

Flowchart of if statement

Test
expression

True

Statement just
below if

!

Figure: Flowchart of if Statement

Example #1: C if statement

Il Program to display a number if user enters negative number// If user enters positive number, that number
won't be displayed

#include <stdio.h>int main(){

int number;

printf("Enter an integer: ");

scanf(%d", &number);

Il Test expression is true if number is less than 0
if (number < 0)

{

printf(""You entered %d.\n", number);

printf("The if statement is easy.");

return 0;}
Narsimha Reddy Engineering College NRCM

Output 1

Enter an integer: -2
You entered -2.

The if statement is easy.

When user enters -2, the test expression (number < 0) becomes true. Hence, You entered -2 is displayed on
the screen.

Output 2

Enter an integer: 5

The if statement in C programming is easy.

When user enters 5, the test expression (number < 0) becomes false and the statement inside the body of if is
skipped.

C if...else statement

The if...else statement executes some code if the test expression is true (nonzero) and some other code if the
test expression is false (0).

Syntax of if...else

if (testExpression) {

/I codes inside the body of if

}
else {

/I codes inside the body of else
}

If test expression is true, codes inside the body of if statement is executed and, codes inside the body of else
statement is skipped.

If test expression is false, codes inside the body of else statement is executed and, codes inside the body of if
statement is skipped.

Flowchart of if...else statement

Narsimha Reddy Engineering College NRCM

Test
expression

False

Body of if Body of else

I

-

Statement just
below if..else

:

Figure: Flowchart of if...else Statement

Example #2: C if...else statement

/I Program to check whether an integer entered by the user is odd or even
#include <stdio.h>int main(){
int number;
printf("Enter an integer: ");
scanf("%d",&number);
Il True if remainder is 0
if(number%2 ==0)
printf(*%d is an even integer.",number);
else
printf("%d is an odd integer.",number);

return O;

¥

Output

Enter an integer: 7

7 is an odd integer.

Narsimha Reddy Engineering College NRCM

When user enters 7, the test expression (number%2 == 0) is evaluated to false. Hence, the statement inside
the body of else statement printf("%d is an odd integer"); is executed and the statement inside the body of if
is skipped.

Nested if...else statement (if...elseif....else Statement)

The if...else statement executes two different codes depending upon whether the test expression is true or
false. Sometimes, a choice has to be made from more than 2 possibilities.

The nested if...else statement allows you to check for multiple test expressions and execute different codes
for more than two conditions.

Syntax of nested if...else statement.

if (testExpressionl)
{

/I statements to be executed if testExpressionl is true

ks

else if(testExpression2)

{

/I statements to be executed if testExpressionl is false and testExpression2 is true

ks

else if (testExpression 3)

{

/I statements to be executed if testExpressionl and testExpression2 is false and testExpression3 is true

else

/I statements to be executed if all test expressions are false

¥

Example #3: C Nested if...else statement
// Program to relate two integers using =, > or <

#include <stdio.h>int main(){
Narsimha Reddy Engineering College NRCM

int numberl, number2;

printf("Enter two integers: *);

scanf("%d %d", &numberl, &number2);
/lchecks if two integers are equal.
if(numberl == number2)

{
printf("Result: %d = %d",numberl,number2);

}
/lchecks if numberl is greater than number2.
else if (numberl > number2)
{
printf("Result: %d > %d", numberl, number2);
}I if both test expression is false
else

{
printf("Result: %d < %d",numberl, number2);

¥

return 0;}

OutputEnter two integers: 1223

Result: 12 < 23

C Programming for Loop

Loops are used in programming to repeat a specific block of code. After reading this tutorial, you will learn

to create a for loop in C programming.

Loops are used in programming to repeat a specific block until some end condition is met. There are three

loops in C programming:

1. for loop
2. while loop
3. do...while loop

Narsimha Reddy Engineering College

for Loop
The syntax of for loop is:

for (initializationStatement; testExpression; updateStatement)

{

/I codes
}

How for loop works?
The initialization statement is executed only once.

Then, the test expression is evaluated. If the test expression is false (0), for loop is terminated. But if the test
expression is true (nonzero), codes inside the body of for loop is executed and the update expression is
updated.

This process repeats until the test expression is false.
The for loop is commonly used when the number of iterations is known.

for loop Flowchart

|

Initilization
statement

Update
statement

A

Test

True Bod
expression — > Voot tor

Loop

Statement just
below for Loop

!

Figure: Flowchart of for Loop

Example: for loop

/I Program to calculate the sum of first n natural numbers// Positive integers 1,2,3...n are known as natural
numbers

Narsimha Reddy Engineering College NRCM

#include <stdio.h>int main(){

int num, count, sum = 0;

printf("Enter a positive integer: ");

scanf("%d", &num);

/I for loop terminates when n is less than count

for(count = 1; count <= num; ++count)

{

sum += count;

printf("Sum = %d", sum);

return 0;}
Output

Enter a positive integer: 10

Sum =55
The value entered by the user is stored in variable num. Suppose, the user entered 10.

The count is initialized to 1 and the test expression is evaluated. Since, the test expression count <= num (1
less than or equal to 10) is true, the body of for loop is executed and the value of sum will equal to 1.

Then, the update statement ++count is executed and count will equal to 2. Again, the test expression is
evaluated. Since, 2 is also less than 10, the test expression is evaluated to true and the body of for loop is
executed. Now, the sum will equal 3.

This process goes on and the sum is calculated until the count reaches 11.

When the count is 11, the test expression is evaluated to O (false) as 11 is not less than or equal to 10.
Therefore, the loop terminates and next, the total sum is printed.

C programming while and do...while Loop

Narsimha Reddy Engineering College NRCM

Loops are used in programming to repeat a specific block of code. After reading this tutorial, you will learn
how to create a while and do...while loop in C programming.

Loops are used in programming to repeat a specific block until some end condition is met. There are three
loops in C programming:

1. for loop
2. while loop
3. do...while loop

while loop
The syntax of a while loop is:

while (testExpression)

{

/Icodes
}

where, testExpression checks the condition is true or false before each loop.
How while loop works?
The while loop evaluates the test expression.

If the test expression is true (nonzero), codes inside the body of while loop is evaluated. The test expression
is evaluated again. The process goes on until the test expression is false.

When the test expression is false, the while loop is terminated.
Flowchart of while loop
Example #1: while loop

I/ Program to find factorial of a number

/l For a positive integer n, factorial = 1*2*3...n

#include <stdio.h>
int main()

{

Narsimha Reddy Engineering College NRCM

int number;

long long factorial;
printf("Enter an integer: *);
scanf("%d",&number);

factorial = 1;

I/ loop terminates when number is less than or equal to 0

while (number > 0)

{

factorial *= number; // factorial = factorial*number;

--number;

printf("Factorial= %lIId", factorial);

return O;

}

Output

Enter an integer: 5
Factorial = 120.
do...while loop

The do..while loop is similar to the while loop with one important difference. The body of do...while loop is
executed once, before checking the test expression. Hence, the do...while loop is executed at least once.

do...while loop Syntax

do
{

/I codes

¥

Narsimha Reddy Engineering College NRCM

while (testExpression);
How do...while loop works?
The code block (loop body) inside the braces is executed once.

Then, the test expression is evaluated. If the test expression is true, the loop body is executed again. This
process goes on until the test expression is evaluated to O (false).

When the test expression is false (nonzero), the do...while loop is terminated.
Example #2: do...while loop

// Program to add numbers until user enters zero

#include <stdio.h>
int main()

{

double number, sum = 0;

/l'loop body is executed at least once

do
{

printf("Enter a number: ");
scanf("%If", &number);

sum += number;

¥

while(number 1= 0.0);

printf("Sum = %.2If",sum);

return O;

¥

Output
Narsimha Reddy Engineering College NRCM

Enter a number: 1.5
Enter a number: 2.4
Enter a number: -3.4
Enter a number: 4.2
Enter a number: 0

Sum =4.70
C Programming break and continue Statement

It is sometimes desirable to skip some statements inside the loop or terminate the loop immediately without
checking the test expression.

In such cases, break and continue statements are used.
break Statement

The break statement terminates the loop (for, while and do...while loop) immediately when it is encountered.
The break statement is used with decision making statement such as if...else.

Syntax of break statement
break;
The simple code above is the syntax for break statement.

Flowchart of break statement

Enter loop

test expression
of loop

Exit Loop
v

Remaining body
of loop

Narsimha Reddy Engineering College NRCM

How break statement works?

while (test Expression)

<
/s / <codes
i¥f (condition Ffor break)

3 2
>

/S / <codes

break;s

fFor (Anit, condition, update)

// <codes
if (condition for break)

<
>

// <codes

break;s

Example #1: break statement

// Program to calculate the sum of maximum of 10 numbers// Calculates sum until user enters positive
number

include <stdio.h>int main(){
inti;

double number, sum = 0.0;

for(i=1; i <= 10; ++i)

{
printf("Enter a n%d: ",i);

scanf("%If",&number);

/'1f user enters negative number, loop is terminated

if(number < 0.0)
{

break;
}

sum += number; // sum = sum + number;

Narsimha Reddy Engineering College

NRCM

printf("Sum = %.2If",sum);

return 0;}
Output

Enteranl: 2.4
Enter an2: 4.5
Enter an3: 3.4
Enter a n4: -3

Sum =10.30

This program calculates the sum of maximum of 10 numbers. It's because, when the user enters negative
number, the break statement is executed and loop is terminated.

In C programming, break statement is also used with switch...case statement.
continue Statement

The continue statement skips some statements inside the loop. The continue statement is used with decision
making statement such as if...else.

Syntax of continue Statement

continue;

Flowchart of continue Statement

Narsimha Reddy Engineering College NRCM

Enter loop

test expression
of loop

continue?

Remaining body
of loop

How continue statement works?

Exit Loop
A\ 4

while (test Expression)

{
// codes
if (condition for continue)
{
continue;
}
// codes
}

for (init, condition, update)

{
// codes
if (condition for continue)
{
continue;
}
// codes
}

Example #2: continue statement
Narsimha Reddy Engineering College

NRCM

I/ Program to calculate sum of maximum of 10 numbers// Negative numbers are skipped from calculation
include <stdio.h>int main(){
inti;

double number, sum = 0.0;

for(i=1; i <= 10; ++i)
{
printf("Enter a n%d: ",i);

scanf("%If",&number);

/I If user enters negative number, loop is terminated

if(number < 0.0)

{

continue;

sum += number; // sum = sum + number;

printf("Sum = %.21f",sum);

return 0;}
Output

Enteranl: 1.1
Enter an2: 2.2
Enteran3: 5.5
Enterand: 4.4

Enter anb: -3.4

Narsimha Reddy Engineering College NRCM

Enter an6: -45.5
Enteran7: 34.5

4.2

Enter a n8:
Enter an9: -1000
Enter anl0: 12

Sum =59.70

In the program, when the user enters positive number, the sum is calculated using sum += number;
statement.

When the user enters negative number, the continue statement is executed and skips the negative number
from calculation.

C switch...case Statement

The if..else..if ladder allows you to execute a block code among many alternatives. If you are checking on
the value of a single variable in if...else...if, it is better to use switch statement.

The switch statement is often faster than nested if...else (not always). Also, the syntax of switch statement is
cleaner and easy to understand.

Syntax of switch...case

switch (n)
{
case constantl:
I code to be executed if n is equal to constantl;
break;
case constant2:
Il code to be executed if n is equal to constant2;

break;

default;

Il code to be executed if n doesn't match any constant

Narsimha Reddy Engineering College NRCM

¥

When a case constant is found that matches the switch expression, control of the program passes to the block
of code associated with that case.

In the above pseudocode, suppose the value of n is equal to constant2. The compiler will execute the block
of code associate with the case statement until the end of switch block, or until the break statement is
encountered.

The break statement is used to prevent the code running into the next case.

switch Statement Flowchart

equals to

case constantl? code block 1

equals to

case constant2? code block 2 >

equals to
case constant37

code block 3 =3

Default code -

il

Example: switch Statement// Program to create a simple calculator// Performs addition, subtraction,
multiplication or division depending the input from user

include <stdio.h>

int main() {

char operator;
double firstNumber,secondNumber;
printf("Enter an operator (+, -, *,/): ");
scanf("'%c", &operator);
printf("Enter two operands: ");
scanf("%If %If",&firstNumber, &secondNumber);

switch(operator)

{

Narsimha Reddy Engineering College NRCM

case '+
printf("%.1If + %.11f = %.1If" firstNumber, secondNumber, firstNumber+secondNumber);

break;

case '-"
printf("%.1If - %.1If = %.11f" firstNumber, secondNumber, firstNumber-secondNumber);

break;

case *":
printf("%.1If * %.1If = %.1If" firstNumber, secondNumber, firstNumber*secondNumber);

break;

case '/
printf("%.1If / %.1If = %. 11" firstNumber, secondNumber, firstNumber/firstNumber);

break;

/Il operator is doesn't match any case constant (+, -, *, /)
default:

printf("Error! operator is not correct");

return 0;}

Output

Enter an operator (+, -, *,): -

Enter two operands: 32.5

12.4

325-124=20.1

Narsimha Reddy Engineering College NRCM

The - operator entered by the user is stored in operator variable. And, two operands 32.5 and 12.4 are stored
in variables firstNumber and secondNumber respectively.

Then, control of the program jumps to

printf("%.1If / %.11f = %.11f" firstNumber, secondNumber, firstNumber/firstNumber);
Finally, the break statement ends the switch statement.

If break statement is not used, all cases after the correct case is executed.

C goto Statement

The goto statement is used to alter the normal sequence of a C program.

Syntax of goto statement

goto label;

label:

statement;

The label is an identifier. When goto statement is encountered, control of the program jumps to label: and
starts executing the code.

— goto label;

Narsimha Reddy Engineering College NRCM

Example: goto Statement

I/ Program to calculate the sum and average of maximum of 5 numbers// If user enters negative number, the
sum and average of previously entered positive number is displayed

include <stdio.h>

int main(){

const int maxInput = 5;
int i
double number, average, sum=0.0;
for(i=1; i<=maxInput; ++i)
{
printf("%d. Enter a number: ", i);

scanf("%If",&number);

/I 1 user enters negative number, flow of program moves to label jump
if(number < 0.0)
goto jump;
sum += number; // sum = sum+number;
}
jump:
average=sum/(i-1);
printf("Sum = %.2A\n", sum);

printf("Average = %.2f", average);

return 0;}
Output

1. Enter a number: 3

2. Enter a number: 4.3

Narsimha Reddy Engineering College NRCM

3. Enter a number: 9.3
4. Enter a number: -2.9

Sum =16.60
Reasons to avoid goto statement
The use of goto statement may lead to code that is buggy and hard to follow. For example:

one:
for (i = 0; i < number; ++i)
{

test +=1;

goto two;

¥

two:
if (test >5) {

goto three;

ks

...Also, goto statement allows you to do bad stuff such as jump out of scope.

That being said, goto statement can be useful sometimes. For example: to break from nested loops.
C Programming Functions

A function is a block of code that performs a specific task.

Suppose, a program related to graphics needs to create a circle and color it depending upon the radius and
color from the user. You can create two functions to solve this problem:

o create a circle function
e color function

Dividing complex problem into small components makes program easy to understand and use.
Types of functions in C programming

Depending on whether a function is defined by the user or already included in C compilers, there are two
types of functions in C programming

There are two types of functions in C programming:
Narsimha Reddy Engineering College NRCM

o Standard library functions
o User defined functions

Standard library functions

The standard library functions are built-in functions in C programming to handle tasks such as mathematical
computations, 1/0O processing, string handling etc.

These functions are defined in the header file. When you include the header file, these functions are
available for use. For example:

The printf() is a standard library function to send formatted output to the screen (display output on the
screen). This function is defined in "stdio.h™ header file.

There are other numerous library functions defined under "stdio.h", such as scanf(), fprintf(), getchar() etc.
Once you include "stdio.h™ in your program, all these functions are available for use.

User-defined functions

As mentioned earlier, C allow programmers to define functions. Such functions created by the user are
called user-defined functions.

Depending upon the complexity and requirement of the program, you can create as many user-defined
functions as you want.

How user-defined function works?

#include <stdio.h>

void functionName()

{

int main()

{

functionName();
Narsimha Reddy Engineering College NRCM

¥

The execution of a C program begins from the main() function.

When the compiler encounters functionName(); inside the main function, control of the program jumps to
void functionName()

And, the compiler starts executing the codes inside the user-defined function.

The control of the program jumps to statement next to functionName(); once all the codes inside the
function definition are executed.

Narsimha Reddy Engineering College NRCM

How function works in C programming?

<stdio.h>

void functionName()

{

Remember, function name is an identifier and should be unique.
This is just an overview on user-defined function. Visit these pages to learn more on:

e User-defined Function in C programming
e Types of user-defined Functions

Advantages of user-defined function

1. The program will be easier to understand, maintain and debug.
Reusable codes that can be used in other programs

no

3. A large program can be divided into smaller modules. Hence, a large project can be divided among

many programmers.

Narsimha Reddy Engineering College

C Programming User-defined functions

You will learn to create user-defined functions in C programming in this article.

A function is a block of code that performs a specific task.

C allows you to define functions according to your need. These functions are known as user-defined
functions. For example:

Suppose, you need to create a circle and color it depending upon the radius and color. You can create two
functions to solve this problem:

« createCircle() function
e color() function

Example: User-defined function

Here is a example to add two integers. To perform this task, a user-defined function addNumbers() is
defined.

#include <stdio.h>
int addNumbers(int a, int b); / function prototype
int main(){

int n1,n2,sum;

printf("Enters two numbers: ");

scanf("%d %d",&n1,&n2);

sum = addNumbers(nl, n2); /[function call

printf(*sum = %d",sum);

return 0;}
int addNumbers(int a,int b) /l function definition {
int result;

result = a+b;

Narsimha Reddy Engineering College NRCM

return result; /[return statement}
Function prototype

A function prototype is simply the declaration of a function that specifies function's name, parameters and
return type. It doesn't contain function body.

A function prototype gives information to the compiler that the function may later be used in the program.
Syntax of function prototype
returnType functionName(typel argumentl, type2 argument2,...);

In the above example, int addNumbers(int a, int b); is the function prototype which provides following
information to the compiler:

1. name of the function is addNumbers()
2. return type of the function is int
3. two arguments of type int are passed to the function

The function prototype is not needed if the user-defined function is defined before the main() function.
Calling a function

Control of the program is transferred to the user-defined function by calling it.

Syntax of function call

functionName(argumentl, argument2, ...);

In the above example, function call is made using addNumbers(n1,n2); statement inside the main().
Function definition

Function definition contains the block of code to perform a specific task i.e. in this case, adding two
numbers and returning it.

Syntax of function definition

returnType functionName(typel argumentl, type2 argument2, ...)

{
//body of the function

¥

When a function is called, the control of the program is transferred to the function definition. And, the
compiler starts executing the codes inside the body of a function.

Narsimha Reddy Engineering College NRCM

Passing arguments to a function

In programming, argument refers to the variable passed to the function. In the above example, two variables
nl and n2 are passed during function call.

The parameters a and b accepts the passed arguments in the function definition. These arguments are called
formal parameters of the function.

How to pass arguments to a function?

<stdio.h>
int addNumbers(int a, int b);

int main()

{

sum = addNumbers(nli, n2);
b
int addNumbers(int a, int b)
{
¥

The type of arguments passed to a function and the formal parameters must match, otherwise the compiler
throws error.

If n1 is of char type, a also should be of char type. If n2 is of float type, variable b also should be of float
type.A function can also be called without passing an argument.

Return Statement

The return statement terminates the execution of a function and returns a value to the calling function. The
program control is transferred to the calling function after return statement.

In the above example, the value of variable result is returned to the variable sum in the main() function.

Narsimha Reddy Engineering College NRCM

Return statement of a Function

<stdio.h>
int addNumbers(int a, int b);

int main()

{

sum = addNumbers(nl, n2);
}

sum = result

int addNumbers(int a, int b)
{

L I . " . "0 I

return result;
}

Syntax of return statement
return (expression);
For example,

return a;

return (a+b);

The type of value returned from the function and the return type specified in function prototype and function

definition must match.

Types of User-defined Functions in C Programming

For better understanding of arguments and return value from the function, user-defined functions can be

categorized as:

e Function with no arguments and no return value
e Function with no arguments and a return value
e Function with arguments and no return value

e Function with arguments and a return value.

Narsimha Reddy Engineering College

NRCM

The 4 programs below check whether an integer entered by the user is a prime number or not. And, all these
programs generate the same output.

Example #1: No arguments passed and no return Value

#include <stdio.h>

void checkPrimeNumber();

int main(){
checkPrimeNumber(); /I no argument is passed to prime()
return 0;}

/I return type of the function is void becuase no value is returned from the functionvoid
checkPrimeNumber(){

int n, i, flag=0;

printf("Enter a positive integer: ");

scanf("%d",&n);

for(i=2; i <= n/2; ++i)
{
if(n%i == 0)

{
flag = 1;

}
if (flag == 1)

printf(*%d is not a prime number."”, n);
else

printf("%d is a prime number.", n);}

The checkPrimeNumber() function takes input from the user, checks whether it is a prime number or not and
displays it on the screen.

Narsimha Reddy Engineering College NRCM

The empty parentheses in checkPrimeNumber(); statement inside the main() function indicates that no
argument is passed to the % function.

The return type of the function is void. Hence, no value is returned from the function.

Example #2: No arguments passed but a return value

#include <stdio.h>int getinteger();
int main(){

intn, i, flag = 0;
/I no argument is passed to the function
/I the value returned from the function is assigned to n

n = getinteger();

for(i=2; i<=n/2; ++i)

{
if(n%i==0){
flag = 1;
break;
k
}
if (flag == 1)
printf("%d is not a prime number.", n);
else
printf("%d is a prime number.", n);
return 0;}

Narsimha Reddy Engineering College NRCM

/I getinteger() function returns integer entered by the userint getinteger(){

intn;

printf("Enter a positive integer: ");

scanf("%d",&n);

return n;}

The empty parentheses in n = getinteger(); statement indicates that no argument is passed to the function.
And, the value returned from the function is assigned to n.

Here, the getinteger() function takes input from the user and returns it. The code to check whether a number
is prime or not is inside the main() function.

Example #3: Argument passed but no return value

#include <stdio.h>void checkPrimeAndDisplay(int n);
int main(){

intn;

printf("Enter a positive integer: ");

scanf("%d",&n);

/I'n is passed to the function

checkPrimeAndDisplay(n);

return 0;}

// void indicates that no value is returned from the functionvoid checkPrimeAndDisplay(int n){

inti, flag = 0;

for(i=2; i <= n/2; ++i)
{

if(n%i == 0){
Narsimha Reddy Engineering College NRCM

flag = 1;

break;
}
}
if(flag ==1)
printf(*%d is not a prime number."”,n);
else

printf(*%d is a prime number.”, n);}
The integer value entered by the user is passed to checkPrimeAndDisplay() function.

Here, the checkPrimeAndDisplay() function checks whether the argument passed is a prime number or not
and displays the appropriate message.

Example #4: Argument passed and a return value
#include <stdio.h>int checkPrimeNumber(int n);

int main(){

int n, flag;

printf("Enter a positive integer: ");

scanf("%d",&n);

/I n is passed to the checkPrimeNumber() function
/I the value returned from the function is assigned to flag variable

flag = checkPrimeNumber(n);

if(flag==1)
printf("%d is not a prime number",n);
else

printf("%d is a prime number"”,n);

Narsimha Reddy Engineering College NRCM

return 0;}
I integer is returned from the functionint checkPrimeNumber(int n){
/* Integer value is returned from function checkPrimeNumber() */

inti;

for(i=2; i <= n/2; ++i)

{
if(n%i == 0)
return 1;
}
return 0;}

The input from the user is passed to checkPrimeNumber() function.The checkPrimeNumber() function
checks whether the passed argument is prime or not. If the passed argument is a prime number, the function
returns 0. If the passed argument is a non-prime number, the function returns 1. The return value is assigned
to flag variable.

Then, the appropriate message is displayed from the main() function.
Which approach is better?
Well, it depends on the problem you are trying to solve. In case of this problem, the last approach is better.

A function should perform a specific task. The checkPrimeNumber() function doesn't take input from the
user nor it displays the appropriate message. It only checks whether a number is prime or not, which makes
code modular, easy to understand and debug.

C Programming Recursion
A function that calls itself is known as a recursive function. And, this technique is known as recursion.
How recursion works?

void recurse()

{

recurse();

Narsimha Reddy Engineering College NRCM

int main()
{

recurse();
}

How does recursion work?

void recurse() ((

{ recursive
. e . e . e call
recurse();

}
int main()
{
recurse();
) st e W

The recursion continues until some condition is met to prevent it.

To prevent infinite recursion, if...else statement (or similar approach) can be used where one branch makes
the recursive call and other doesn't.

Example: Sum of Natural Numbers Using Recursion

#include <stdio.h>int sum(int n);
int main(){

int number, result;

Narsimha Reddy Engineering College NRCM

printf("Enter a positive integer: ");

scanf(%d", &number);

result = sum(number);

printf(sum=%d", result);}
int sum(int num){
if (num!=0)
return num + sum(num-1); // sum() function calls itself
else

return num;}
Output

Enter a positive integer:
3
6

Initially, the sum() is called from the main() function with number passed as an argument.

Suppose, the value of num is 3 initially. During next function call, 2 is passed to the sum() function. This
process continues until num is equal to 0.

When num is equal to 0, the if condition fails and the else part is executed returning the sum of integers to
the main() function.

Narsimha Reddy Engineering College NRCM

int main() {

result = sum(number) <€ 1

} f
. i3+3 = 6
int sum(int n) : is returned

{
if(nt=0) [3] [2]

return n +
else
return n;

142 = 3

int sum(int n) P is returned

{
if(n1=0) [2]

return n + sum(n-1); oo

else
return;
2 0+1 = 1
int sum(int n) is returned
{
if(n1=0)
return n + sum(n-1); g
else :
return n;
}
int sum(int n) o
{ .
if(n!=0) is returned
return n + sum(n-1);
else
return nj e
}

Advantages and Disadvantages of Recursion

Recursion makes program elegant and cleaner. All algorithms can be defined recursively which makes it
easier to visualize and prove. i

If the speed of the program is vital then, you should avoid using recursion. Recursions use more memory
and are generally slow. Instead, you can use loop.

Scope and Lifetime of a variable.

Every variable in C programming has two properties: type and storage class.

Type refers to the data type of a variable. And, storage class determines the scope and lifetime of a variable.
There are 4 types of storage class:

1. automatic
2. external

Narsimha Reddy Engineering College NRCM

3. static
4. register

Local Variable
The variables declared inside the function are automatic or local variables.

The local variables exist only inside the function in which it is declared. When the function exits, the local
variables are destroyed.

int main() {
int n; // nis a local variable to main() function

}
void func() {

int n1; // nlis local to func() function
}

In the above code, nl is destroyed when func() exits. Likewise, n gets destroyed when main() exits.
Global Variable

Variables that are declared outside of all functions are known as external variables. External or global
variables are accessible to any function.

Example #1: External Variable
#include <stdio.h>void display();
intn=5; // global variable

int main(){
++n; // variable n is not declared in the main() function
display();
return 0;}

void display(){
++n; // variable n is not declared in the display() function
printf("n = %d", n);}

Output

n=7

Suppose, a global variable is declared in filel. If you try to use that variable in a different file file2, the
compiler will complain. To solve this problem, keyword extern is used in file2 to indicate that the external
variable is declared in another file.

Register Variable

The register keyword is used to declare register variables. Register variables were supposed to be faster than
local variables.

However, modern compilers are very good at code optimization and there is a rare chance that using register
variables will make your program faster. 5
Narsimha Reddy Engineering College NRCM

Unless you are working on embedded system where you know how to optimize code for the given
application, there is no use of register variables.

Static Variable

A static variable is declared by using keyword static. For example;
static int i;

The value of a static variable persists until the end of the program.
Example #2: Static Variable

#include <stdio.h>void display();
int main(){
display();
display();}void display(){
static int c = 0;
printf("%d “.c);
c+=5;}
Output
0 5

During the first function call, the value of c is equal to 0. Then, it's value is increased by 5.

During the second function call, variable c is not initialized to 0 again. It's because c is a static variable. So,
5 is displayed on the screen.

C Programming Arrays

An array is a collection of data that holds fixed number of values of same type. For example: if you want to
store marks of 100 students, you can create an array for it.

float marks[100];
The size and type of arrays cannot be changed after its declaration.
Arrays are of two types:

1. One-dimensional arrays
2. Multidimensional arrays (will be discussed in next chapter)

Narsimha Reddy Engineering College NRCM

How to declare an array in C?
data_type array_namel[array_size];
For example,

float mark[5];

Here, we declared an array, mark, of floating-point type and size 5. Meaning, it can hold 5 floating-point
values.

Elements of an Array and How to access them?
You can access elements of an array by indices.

Suppose you declared an array mark as above. The first element is mark[0], second element is mark[1] and
SO on.

mark[0] mark[1] mark[2] mark[3] mark[4]

Few key notes:

o Arrays have 0 as the first index not 1. In this example, mark[0]

« Ifthe size of an array is n, to access the last element, (n-1) index is used. In this example, mark[4]

e Suppose the starting address of mark[0] is 2120d. Then, the next address, a[1], will be 2124d,
address of a[2] will be 2128d and so on. It's because the size of a float is 4 bytes.

How to initialize an array in C programming?

It's possible to initialize an array during declaration. For example,
int mark[5] = {19, 10, 8, 17, 9},

Another method to initialize array during declaration:

int mark[] = {19, 10, 8, 17, 9},

mark[0] mark[1] mark[2] mark[3] mark[4]

19 10 8 17 9

Narsimha Reddy Engineering College NRCM

Here,

mark[0] is equal to 19
mark[1] is equal to 10
mark[2] is equal to 8

mark[3] is equal to 17

mark[4] is equal to 9
How to insert and print array elements?

int mark[5] = {19, 10, 8, 17, 9}

/I insert different value to third element

mark[3] = 9;

/I take input from the user and insert in third elementscanf("%d", &mark[2]);
/[take input from the user and insert in (i+1)th element

scanf("%d", &mark[i]);

/I print first element of an array

printf(*%d", mark[0]);

/[print ith element of an array

printf("%d", mark[i-1]);

Example: C Arrays

Il Program to find the average of n (n < 10) numbers using arrays
#include <stdio.h>int main(){
int marks[10], i, n, sum = 0, average;
printf("Enter n:);
scanf("%d", &n);
for(i=0; i<n; ++i)
{
printf("Enter number%d: ",i+1);
scanf("%d", &marks[i]);

sum += marksJiJ;
Narsimha Reddy Engineering College

NRCM

¥

average = sum/n;
printf("Average marks = %d", average);

return O;

¥

Output

Enter n: 5

Enter numberl: 45

Enter number2: 35

Enter number3: 38

Enter number4: 31

Enter number5: 49

Average = 39

Important thing to remember when working with C arrays
Suppose you declared an array of 10 elements. Let's say,

int testArray[10];

You can use the array members from testArray[0] to testArray[9].

If you try to access array elements outside of its bound, let's say testArray[12], the compiler may not show
any error. However, this may cause unexpected output (undefined behavior).

Before going further, checkout these array articles:
C Programming Multidimensional Arrays

In this section, you will learn to work with multidimensional arrays (two dimensional and three dimensional
array).In C programming, you can create array of an array known as multidimensional array. For example,

float x[3][4];

Here, x is a two-dimensional (2d) array. The array can hold 12 elements. You can think the array as table
with 3 row and each row has 4 column.

Narsimha Reddy Engineering College NRCM

Column |Column Column|Column

1 2 3 a
Row 1 | x[el[e] | x[el[1] | x[e][2] | x[@][3]
ROow 2 | x[1][e] | x[1][1]) | x[21][2] | x[1][3]
ROW 3 | x[2][e] | x[2][1] | x[2][2] | x[2][3]

Similarly, you can declare a three-dimensional (3d) array. For example,
float y[2][4][3];
Here, The array y can hold 24 elements.

You can think this example as: Each 2 elements have 4 elements, which makes 8 elements and each 8
elements can have 3 elements. Hence, the total number of elements is 24.

How to initialize a multidimensional array?
There is more than one way to initialize a multidimensional array.
Initialization of a two dimensional array

/I Different ways to initialize two dimensional array

int c[2][3] = {{1, 3, 0}, {-1, 5, 9}};

int c[][3] = {{1, 3, 0}, {-1, 5, 9}}:

intc[2][3] ={1,3,0,-1,5, 9};
Above code are three different ways to initialize a two dimensional arrays.
Initialization of a three dimensional array.

You can initialize a three dimensional array in a similar way like a two dimensional array. Here's an
example,

int test[2][3][4] = {

{{3,4,2,3}{0,-3,9, 11}, {23, 12, 23, 2} },
Narsimha Reddy Engineering College

NRCM

{{13,4,56, 3},{5,9,3,5},{3,1,4,9} }
Y
Example #1: Two Dimensional Array to store and display values

/I C program to store temperature of two cities for a week and display it.

#include <stdio.h>
const int CITY = 2;const int WEEK =7;

int main(){
int temperature[CITY][WEEK];
for (inti=0;i<CITY; ++i) {
for(int j = 0; j < WEEK; ++j) {
printf("City %d, Day %d: ", i+1, j+1);

scanf("%d", &temperature[i][j]);

}

printf("\nDisplaying values: \n\n");

for (inti = 0; i < CITY; ++i) {
for(intj = 0; j < WEEK; ++j)
{

printf("City %d, Day %d = %d\n", i+1, j+1, temperature[i][j]);

¥

return 0;}

Output
City 1, Day 1: 33
City 1, Day 2: 34

City 1, Day 3: 35
Narsimha Reddy Engineering College

NRCM

City 1, Day 4: 33
City 1, Day 5: 32
City 1, Day 6: 31
City 1, Day 7: 30
City 2, Day 1: 23
City 2, Day 2: 22
City 2, Day 3: 21
City 2, Day 4. 24
City 2, Day 5: 22
City 2, Day 6: 25

City 2, Day 7: 26

Displaying values:

City 1, Day 1 = 33
Cityl,Day2=34
City 1, Day 3=35
City 1, Day 4 = 33
City 1, Day 5 =32
City 1, Day 6 =31
City 1, Day 7 =30
City 2, Day 1 =23
City 2, Day 2 = 22
City 2, Day 3=21
City 2, Day 4 =24
City 2, Day 5 =22
City 2, Day 6 =25

City 2, Day 7 = 26

Narsimha Reddy Engineering College

NRCM

Example #2: Sum of two matrices using Two dimensional arrays
C program to find the sum of two matrices of order 2*2 using multidimensional arrays.
#include <stdio.h>int main(){

float a[2][2], b[2][2], c[2][2];

inti, j;
Il Taking input using nested for loop
printf("Enter elements of 1st matrix\n™);
for(i=0; i<2; ++i)
for(j=0; j<2; ++j)
{
printf("Enter a%d%d: ", i+1, j+1);
scanf("%f", &a[i][j]);
}

Il Taking input using nested for loop
printf("Enter elements of 2nd matrix\n");
for(i=0; i<2; ++i)

for(j=0; j<2; ++j)
{
printf("Enter b%d%d: ", i+1, j+1);
scanf("%f", &b[i][j]);
}
// adding corresponding elements of two arrays
for(i=0; i<2; ++i)
for(j=0; j<2; ++j)
{
c[illil = afili] + bIilhl;
}
/I Displaying the sum
printf("\nSum Of Matrix:");

Narsimha Reddy Engineering College NRCM

for(i=0; i<2; ++i)
for(j=0; j<2; ++j)
{
printf("%.1f\t", c[i][j]);

if(j==1)
printf(*\n™);

}return 0;}
Ouput
Enter elements of 1st matrix

Enter all: 2;
Enter a12: 0.5;
Enter a21: -1.1;
Enter a22: 2;
Enter elements of 2nd matrix
Enter b11: 0.2;
Enter b12: O;
Enter b21: 0.23;
Enter b22: 23;
Sum Of Matrix:
2.2 0.5
-0.9 25.0

Example 3: Three Dimensional Array
C Program to store values entered by the user in a three-dimensional array and display it.
#include <stdio.h>int main(){

/I this array can store 12 elements
inti, j, k, test[2][3][2];
printf("Enter 12 values: \n");
for(i = 0; i < 2; ++i) {

for(j=0;j<3;++){
Narsimha Reddy Engineering College

NRCM

for(k = 0; k < 2; ++k) {

scanf("%d", &test[i][j1[K]);

ks

/I Displaying values with proper index.
printf(*\nDisplaying values:\n");
for(i=0;i<2;++){
for j =0;j<3; +4j) {
for(k =0; k<2; ++k) {

printf("test[%d][%d][%d] = %d\n", i, j, k, test[i][j][K]);

return 0;}
Output
Enter 12 values:
1

2

3

10

11

Narsimha Reddy Engineering College NRCM

12

Displaying Values:

test[0][0][0] = 1

test[0][0][1] = 2

test[0][L][0] = 3

test[0][1][1] = 4

test[0][2][0] = 5

test[0][2][1] = 6

test[1][0][0] =7

test[1][0][1] = 8

test[1][1][0] =9

test[1][L][1] = 10

test[1][2][0] = 11

test[1][2][1] = 12

How to pass arrays to a function in C Programming?
In C programming, a single array element or an entire array can be passed to a function.

This can be done for both one-dimensional array or a multi-dimensional array.

Passing One-dimensional Array In Function

Single element of an array can be passed in similar manner as passing variable to a function.

C program to pass a single element of an array to function
#include <stdio.h>void display(int age){
printf(*%d", age);}
int main(){
intageArray[] ={2,3,4 };
display(ageArray[2]); //Passing array element ageArray[2] only.
return 0;}

Output

Narsimha Reddy Engineering College

NRCM

4
Passing an entire one-dimensional array to a function

While passing arrays as arguments to the function, only the name of the array is passed (,i.e, starting address
of memory area is passed as argument).

C program to pass an array containing age of person to a function. This function should find average
age and display the average age in main function.

#include <stdio.h>float average(float age[]);
int main(){
float avg, age[] = { 23.4, 55, 22.6, 3, 40.5, 18 };
avg = average(age); /* Only name of array is passed as argument. */
printf("Average age=%.2f", avg);
return 0;}
float average(float age[]){
int i
float avg, sum = 0.0;
for (i=0;i<6;++i) {
sum += age[i];
}
avg = (sum/ 6);

return avg;}
Output

Average age=27.08

Passing Multi-dimensional Arrays to Function

To pass two-dimensional array to a function as an argument, starting address of memory area reserved is
passed as in one dimensional array

#Example: Pass two-dimensional arrays to a function

Narsimha Reddy Engineering College NRCM

#include <stdio.h>void displayNumbers(int num[2][2]);int main(){
int num[2][2], i, j;
printf("Enter 4 numbers:\n");
for (i=0;i<2; ++i)
for (j =0;j <2; ++))
scanf("%d", &numli][j]);
/I passing multi-dimensional array to displayNumbers function
displayNumbers(num);
return 0;}
void displayNumbers(int num[2][2]){
I Instead of the above line,
// void displayNumbers(int num[][2]) is also valid
inti, j;
printf("Displaying:\n™);
for (i=0;i<2; ++i)
for (j=0; j < 2; ++j)
printf("%d\n", num[i][j]);}

Output

Enter 4 numbers:
2

3

4

5

Displaying:

2

3

4

5

Narsimha Reddy Engineering College

NRCM

C Programming Pointers and Arrays

Arrays are closely related to pointers in C programming but the important difference between them is that, a
pointer variable takes different addresses as value whereas, in case of array it is fixed.

This can be demonstrated by an example:

#include <stdio.h>int main(){
char charArr[4];

inti;

for(i =0; i < 4; ++i)

{

printf("Address of charArr[%d] = %u\n", i, &charArr[i]);
}
return 0;}

When you run the program, the output will be:

Address of charArr[0] = 28ff44
Address of charArr[1] = 28ff45
Address of charArr[2] = 28ff46

Address of charArr[3] = 28ff47
Note: You may get different address of an array.

Notice, that there is an equal difference (difference of 1 byte) between any two consecutive elements of
array charArr.

But, since pointers just point at the location of another variable, it can store any address.
Relation between Arrays and Pointers

Consider an array:

Narsimha Reddy Engineering College NRCM

int arr[4];

arr[0] arr[1] arr[3] arr[4]

Figure: Array as Pointer

In C programming, name of the array always points to address of the first element of an array.

In the above example, % arr and &arr[0]HZ points to the address of the first element.

&arr[0] is equivalent to arr

Since, the addresses of both are the same, the values of arr and &arr[0] are also the same.
arr[0] is equivalent to *arr (value of an address of the pointer)

Similarly,

&arr[1] is equivalent to (arr + 1) AND, arr[1] is equivalent to *(arr + 1).
&arr[2] is equivalent to (arr + 2) AND, arr[2] is equivalent to *(arr + 2).

&arr[3] is equivalent to (arr + 3) AND, arr[3] is equivalent to *(arr + 3).

&arr[i] is equivalent to (arr + i) AND, arr[i] is equivalent to *(arr + i).
In C, you can declare an array and can use pointer to alter the data of an array.
Example: Program to find the sum of six numbers with arrays and pointers
#include <stdio.h>int main(){

int i, classes[6],sum = 0;

printf("Enter 6 numbers:\n");

for(i = 0; i < 6; ++i)

{

/I (classes + i) is equivalent to &classes[i]

scanf("%d",(classes + i));

Narsimha Reddy Engineering College

NRCM

/I *(classes + i) is equivalent to classes][i]

sum += *(classes + i);

¥
printf(*Sum = %d", sum);
return 0;}

Output

Enter 6 numbers:
2

3

Sum =21
Call by Reference: Using pointers [With Examples]

When a pointer is passed as an argument to a function, address of the memory location is passed instead of
the value.

This is because, pointer stores the location of the memory, and not the value.
Example of Pointer And Functions
Program to swap two number using call by reference.

[* C Program to swap two numbers using pointers and function. */#include <stdio.h>void swap(int *n1, int
*n2);

int main(){

int num1 =5, num2 = 10;

// address of num1 and numz2 is passed to the swap function
swap(&numl, &num?2);

printf("Numberl = %d\n", num1);

Narsimha Reddy Engineering College NRCM

printf("Number2 = %d", num2);
return 0;}
void swap(int * n1, int * n2){

/Il pointer n1 and n2 points to the address of num1 and num2 respectively

int temp;
temp = *nl;
*nl=*n2;
*n2 = temp;}
Output
Numberl =10
Number2 =5

The address of memory location num1 and num2 are passed to the function swap and the pointers *n1 and
*n2 accept those values.

So, now the pointer n1 and n2 points to the address of num1 and num2 respectively.

When, the value of pointers are changed, the value in the pointed memory location also changes
correspondingly.

Hence, changes made to *n1 and *n2 are reflected in num1 and num2 in the main function.
This technique is known as Call by Reference in C programming.
C Dynamic Memory Allocation

In C, the exact size of array is unknown until compile time, i.e., the time when a compiler compiles your
code into a computer understandable language. So, sometimes the size of the array can be insufficient or
more than required.

Dynamic memory allocation allows your program to obtain more memory space while running, or to release
it if it's not required.

In simple terms, Dynamic memory allocation allows you to manually handle memory space for your
program.

Although, C language inherently does not have any technique to allocate memory dynamically, there are 4
library functions under "stdlib.h" for dynamic memory allocation.

Narsimha Reddy Engineering College NRCM

Function Use of Function

Allocates requested size of bytes and returns a pointer first byte of allocated

malloc() space

calloc() Allocates space for an array elements, initializes to zero and then returns a
pointer to memory
free() deallocate the previously allocated space

realloc() |Change the size of previously allocated space

C malloc()
The name malloc stands for "memory allocation™.

The function malloc() reserves a block of memory of specified size and return a pointer of type void which
can be casted into pointer of any form.

Syntax of malloc()
ptr = (cast-type*) malloc(byte-size)

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory with size of
byte size. If the space is insufficient, allocation fails and returns NULL pointer.

ptr = (int*) malloc(100 * sizeof(int));

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes respectively and the
pointer points to the address of first byte of memory.

C calloc()
The name calloc stands for "contiguous allocation™.

The only difference between malloc() and calloc() is that, malloc() allocates single block of memory
whereas calloc() allocates multiple blocks of memory each of same size and sets all bytes to zero.

Syntax of calloc()
ptr = (cast-type*)calloc(n, element-size);
This statement will allocate contiguous space in memory for an array of n elements. For example:

ptr = (float*) calloc(25, sizeof(float));

Narsimha Reddy Engineering College NRCM

This statement allocates contiguous space in memory for an array of 25 elements each of size of float, i.e, 4
bytes.

C free()

Dynamically allocated memory created with either calloc() or malloc() doesn't get freed on its own. You
must explicitly use free() to release the space.

syntax of free()

free(ptr);

This statement frees the space allocated in the memory pointed by ptr.
Example #1: Using C malloc() and free()

Write a C program to find sum of n elements entered by user. To perform this program, allocate
memory dynamically using malloc() function.

#include <stdio.h>#include <stdlib.h>
int main(){

int num, i, *ptr, sum = 0;

printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) malloc(num * sizeof(int)); //memory allocated using malloc
if(ptr == NULL)
{

printf("Error! memory not allocated.");

exit(0);

printf("Enter elements of array:);
for(i = 0; i < num; ++i)

{

Narsimha Reddy Engineering College NRCM

scanf("%d", ptr + i);

sum +=*(ptr + i);

printf("Sum = %d", sum);
free(ptr);

return 0;}
Example #2: Using C calloc() and free()

Write a C program to find sum of n elements entered by user. To perform this program, allocate
memory dynamically using calloc() function.

#include <stdio.h>#include <stdlib.h>

int main(){
int num, i, *ptr, sum = 0;
printf("Enter number of elements: ");

scanf("%d", &num);

ptr = (int*) calloc(num, sizeof(int));
if(ptr == NULL)
{
printf("Error! memory not allocated.");

exit(0);

printf("Enter elements of array: ");
fOI'(i =0;i<num; ++i)
{

scanf("%d", ptr + i);

sum += *(ptr + 1);

Narsimha Reddy Engineering College

NRCM

printf("Sum = %d", sum);
free(ptr);
return 0;}

C realloc()

If the previously allocated memory is insufficient or more than required, you can change the previously
allocated memory size using realloc().

Syntax of realloc()

ptr = realloc(ptr, newsize);

Here, ptr is reallocated with size of newsize.
Example #3: Using realloc()

#include <stdio.h>#include <stdlib.h>

int main(){

int *ptr, i, nl, n2;
printf("Enter size of array: ");
scanf("%d", &n1l);
ptr = (int*) malloc(nl * sizeof(int));
printf("Address of previously allocated memory: ");
for(i = 0; i <nl; ++i)
printf("%u\t",ptr + i);
printf("\nEnter new size of array: *);
scanf("%d", &n2);
ptr = realloc(ptr, n2);
for(i = 0; i < n2; ++i)

printf("%u\t”, ptr + i);

return 0;}

C Programming Structure
Structure is a collection of variables of different types under a single name.

For example: You want to store some information about a person: his/her name, citizenship number and
salary. You can easily create different variables name, citNo, salary to store these information separately.

Narsimha Reddy Engineering College NRCM

However, in the future, you would want to store information about multiple persons. Now, you'd need to
create different variables for each information per person: namel, citNo1l, salaryl, name2, citNo2, salary2

You can easily visualize how big and messy the code would look. Also, since no relation between the
variables (information) would exist, it's going to be a daunting task.

A better approach will be to have a collection of all related information under a single name Person, and use
it for every person. Now, the code looks much cleaner, readable and efficient as well.

This collection of all related information under a single name Person is a structure.
Structure Definition in C

Keyword struct is used for creating a structure.

Syntax of structure

struct structure_name

{
data_type memberl,;
data_type member2;
data_type memeber;
b

Note: Don't forget the semicolon };# in the ending line.
We can create the structure for a person as mentioned above as:
struct person

{
char name[50];
int citNo;
float salary;

3

This declaration above creates the derived data type struct person.

Structure variable declaration

When a structure is defined, it creates a user-defined type but, no storage or memory is allocated.
For the above structure of a person, variable can be declared as:

struct person

{
char name[50];
int citNo;
float salary;

2

int main()

Narsimha Reddy Engineering College NRCM

struct person personl, person2, person3[20];
return O;

¥

Another way of creating a structure variable is:

struct person

{

char name[50];
int citNo;
float salary;

} personl, person2, person3[20];

In both cases, two variables personl, person2 and an array person3 having 20 elements of type struct
person are created.

Accessing members of a structure
There are two types of operators used for accessing members of a structure.

1. Member operator(.)
2. Structure pointer operator(->)

Any member of a structure can be accessed as:
structure_variable_name.member_name

Suppose, we want to access salary for variable person2. Then, it can be accessed as:
person2.salary

Example of structure

Write a C program to add two distances entered by user. Measurement of distance should be in inch
and feet. (Note: 12 inches = 1 foot)

#include <stdio.h>struct Distance{
int feet;
float inch;} distl, dist2, sum;

int main(){

Narsimha Reddy Engineering College NRCM

printf("'1st distance\n");

Il Input of feet for structure variable distl
printf("Enter feet:);

scanf("%d", &distl.feet);

Il Input of inch for structure variable dist1
printf("Enter inch: ");

scanf("%f", &distl.inch);

printf(2nd distance\n™);

Il Input of feet for structure variable dist2
printf("Enter feet: ");

scanf("%d", &dist2.feet);

/I Input of feet for structure variable dist2
printf("Enter inch: ");

scanf("%f", &dist2.inch);

sum.feet = distl.feet + dist2.feet;

sum.inch = distl.inch + dist2.inch;

if (sum.inch > 12)

{

INfinch is greater than 12, changing it to feet.
++sum.feet;

sum.inch = sum.inch - 12;

Narsimha Reddy Engineering College

NRCM

/[printing sum of distance dist1 and dist2
printf("Sum of distances = %d\'-%.1\"", sum.feet, sum.inch);

return 0;}
Output

1st distance
Enter feet: 12
Enter inch: 7.9
2nd distance
Enter feet: 2
Enter inch: 9.8

Sum of distances = 15'-5.7"

Keyword typedef while using structure

Writing struct structure_name variable_name; to declare a structure variable isn't intuitive as to what it
signifies, and takes some considerable amount of development time.

So, developers generally use typedef to name the structure as a whole. For example:

typedef struct complex
{
int imag;
float real;

} comp;

int main()
{
comp compl, comp2;

¥

Narsimha Reddy Engineering College NRCM

Here, typedef keyword is used in creating a type comp #Z(which is of type as struct complex).
Then, two structure variables compl and comp2 are created by this comp type.

Structures within structures

Structures can be nested within other structures in C programming.

struct complex

{

int imag_value;

float real_value;

1

struct number

{

struct complex comp;
int real;

} numl, numz2;

Suppose, you want to access imag_value for num2 structure variable then, following structure member is
used.

numz2.comp.imag_value
Passing structures to a function
There are mainly two ways to pass structures to a function:

1. Passing by value
2. Passing by reference

C Programming Structure and Pointer

Narsimha Reddy Engineering College NRCM

struct number { ptr *

intimg; —— |,
float real; L» img | real
k ‘ A

Structures can be created and accessed using pointers. A pointer variable of a structure can be created as
below:

struct name {

memberl;
member2;
3
int main(){
struct name *ptr;
}

Here, the pointer variable of type struct name is created.
Accessing structure's member through pointer
A structure's member can be accesssed through pointer in two ways:

1. Referencing pointer to another address to access memory
2. Using dynamic memory allocation

1. Referencing pointer to another address to access the memory_Consider an example to access
structure's member through pointer.

#include <stdio.h>typedef struct person{
int age;
float weight;};

int main(){
Narsimha Reddy Engineering College NRCM

struct person *personPtr, personl;

personPtr = &personl; I/ Referencing pointer to memory address of personl
printf("Enter integer: ");

scanf("%d",&(*personPtr).age);

printf("Enter number: ");

scanf("%f",&(*personPtr).weight);

printf("Displaying: ");

printf("%d%f",(*personPtr).age,(*personPtr).weight);

return 0;}

In this example, the pointer variable of type struct person is referenced to the address of personl. Then, only
the structure member through pointer can can accessed.

Using -> operator to access structure pointer member

Structure pointer member can also be accessed using -> operator.

(*personPtr).age is same as personPtr->age

(*personPtr).weight is same as personPtr->weight

2. Accessing structure member through pointer using dynamic memory allocation

To access structure member using pointers, memory can be allocated dynamically using malloc() function
defined under "stdlib.h™ header file.

Syntax to use malloc()

ptr = (cast-type*) malloc(byte-size)

Example to use structure's member through pointer using malloc() function.
#include <stdio.h>#include <stdlib.h>struct person {

int age;
float weight;
char name[30];};
int main(){
struct person *ptr;
inti, num;
printf("Enter number of persons: "),

scanf("%d", &num);

Narsimha Reddy Engineering College NRCM

ptr = (struct person*) malloc(num * sizeof(struct person));
/I Above statement allocates the memory for n structures with pointer personPtr pointing to base address
for(i = 0; i < num; ++i)
{
printf("Enter name, age and weight of the person respectively:\n");
scanf("%s%d%f", &(ptr+i)->name, &(ptr+i)->age, &(ptr+i)->weight);
}
printf("Displaying Infromation:\n™);
for(i = 0; i < num; ++i)
printf("%s\t%d\t%.2A\n", (ptr+i)->name, (ptr+i)->age, (ptr+i)->weight);

return 0;}
Output

Enter number of persons: 2

Enter name, age and weight of the person respectively:
Adam

2

3.2

Enter name, age and weight of the person respectively:
Eve

6

2.3

Displaying Information:

Adam 2 3.20

Eve 6 2.30

How to pass structure to a function in C programming?

In this article, you'll find relevant examples to pass structures as an argument to a function, and use them in
your program.

Narsimha Reddy Engineering College NRCM

In C, structure can be passed to functions by two methods:

1. Passing by value (passing actual value as argument)
2. Passing by reference (passing address of an argument)

Passing structure by value
A structure variable can be passed to the function as an argument as a normal variable.

If structure is passed by value, changes made to the structure variable inside the function definition does not
reflect in the originally passed structure variable.

C program to create a structure student, containing name and roll and display the information.
#include <stdio.h>struct student{

char name[50];
int roll;};

void display(struct student stu);// function prototype should be below to the structure declaration otherwise
compiler shows error

int main(){
struct student stud;
printf("Enter student's name: ");
scanf("%s", &stud.name);
printf("Enter roll number:");
scanf("%d", &stud.roll);
display(stud); // passing structure variable stud as argument
return 0;}void display(struct student stu){
printf("Output\nName: %s",stu.name);

printf("\nRoll: %d",stu.roll);}
Output

Enter student's name: Kevin Amla
Enter roll number: 149

Output

Name: Kevin Amla

Roll: 149

Narsimha Reddy Engineering College NRCM

Passing structure by reference
The memory address of a structure variable is passed to function while passing it by reference.

If structure is passed by reference, changes made to the structure variable inside function definition reflects
in the originally passed structure variable.

C program to add two distances (feet-inch system) and display the result without the return
statement.

#include <stdio.h>struct distance{
int feet;
float inch;};void add(struct distance d1,struct distance d2, struct distance *d3);
int main(){
struct distance dist1, dist2, dist3;
printf("First distance\n");
printf("Enter feet: ");
scanf("%d", &distl.feet);
printf("Enter inch: ");
scanf("%f", &distl.inch);
printf("Second distance\n™);
printf("Enter feet:);
scanf("%d", &dist2.feet);
printf("Enter inch: ");
scanf("%f", &dist2.inch);
add(dist1, dist2, &dist3);

/Ipassing structure variables distl and dist2 by value whereas passing structure variable dist3 by
reference

printf(*\nSum of distances = %d\'-%.1f\"", dist3.feet, dist3.inch);

return 0;}void add(struct distance d1,struct distance d2, struct distance *d3) {
//Adding distances d1 and d2 and storing it in d3
d3->feet = d1.feet + d2.feet;

d3->inch = d1.inch + d2.inch;

Narsimha Reddy Engineering College NRCM

if (d3->inch >=12) { [* if inch is greater or equal to 12, converting it to feet. */

d3->inch -=12;
++d3->feet;

3s

Output

First distance

Enter feet: 12

Enter inch: 6.8

Second distance

Enter feet: 5

Enter inch: 7.5

Sum of distances = 18'-2.3"

In this program, structure variables distl and dist2 are passed by value to the add function (because value of
distl and dist2 does not need to be displayed in main function).But, dist3 is passed by reference ,i.e, address
of dist3(&dist3) is passed as an argument.

Due to this, the structure pointer variable d3 inside the add function points to the address of dist3 from the
calling main function. So, any change made to the d3 variable is seen in dist3 variable in main function.

As a result, the correct sum is displayed in the output.
C Programming Unions
Unions are quite similar to structures in C. Like structures, unions are also derived types.

union car

{

char name[50];
int price;
h
Defining a union is as easy as replacing the keyword struct with the keyword union.

How to create union variables?

Union variables can be created in similar manner as structure variables.

Narsimha Reddy Engineering College NRCM

union car

{

char name[50];
int price;
} carl, car2, *car3,;
OR

union car

{

char name[50];
int price;

1

int main()

{

union car carl, car2, *car3;

return O;
}

In both cases, union variables carl, car2 and union pointer variable car3 of type union car is created.
Accessing members of a union

Again, the member of unions can be accessed in similar manner as structures.

In the above example, suppose you want to access price for union variable carl, it can be accessed as:
carl.price

Likewise, if you want to access price for the union pointer variable car3, it can be accessed as:
(*car3).price

or;

car3->price

Difference between union and structure

Narsimha Reddy Engineering College NRCM

Though unions are similar to structure in so many ways, the difference between them is crucial to
understand.

The primary difference can be demonstrated by this example:

#include <stdio.h>union unionJob{
//defining a union
char name[32];
float salary;
int workerNo;} uJob;
struct structJob{
char name[32];
float salary;
int workerNo;} sJob;
int main(){
printf(*size of union = %d", sizeof(uJob));
printf(*\nsize of structure = %d", sizeof(sJob));

return 0;}
Output

size of union = 32

size of structure = 40
More memory is allocated to structures than union
As seen in the above example, there is a difference in memory allocation between union and structure.

The amount of memory required to store a structure variable is the sum of memory size of all members.

name salary worker_no
L]
32 bytes 4 bytes 4 bytes

Fig: Memory allocation in case of structure

But, the memory required to store a union variable is the memory required for the largest element of an
union.

Narsimha Reddy Engineering College NRCM

name

32 bytes

Fig: Memory allocation in case of union

Only one union member can be accessed at a time
In the case of structure, all of its members can be accessed at any time.

But, in the case of union, only one of its members can be accessed at a time and all other members will
contain garbage values.

#include <stdio.h>union job{
char name[32];
float salary;
int workerNo;} jobl;
int main(){
printf("Enter name:\n");

scanf("%s", &jobl.name);

printf("Enter salary: \n");

scanf("%f", &jobl.salary);

printf("Displaying\nName :%s\n", jobl.name);

printf("Salary: %.1f", jobl.salary);

return 0;}
Output

Enter name
Hillary
Enter salary

1234.23
Narsimha Reddy Engineering College NRCM

Displaying
Name: f%Bary

Salary: 1234.2
Note: You may get different garbage value for the name.

Initially in the program, i Hillary is stored in job1.name and all other members of jobl, i.e. salary,
workerNo, will contain garbage values.

But, when user enters the value of salary, 1234.23 will be stored in jobl.salary and other members, i.e. name,
workerNo, will now contain garbage values.

Thus in the output, salary is printed accurately but, name displays some random string.
Passing Union To a Function

Union can be passed in similar manner as structures in C programming.

C Programming Files 1/0

There are a large number of functions to handle file I/O (Input Output) in C. In this tutorial, you will learn to
handle standard 1/O in C using fprintf(), fscanf(), fread(), fwrite(), fseek.and more.

In C programming, file is a place on your physical disk where information is stored.
Why files are needed?

e When a program is terminated, the entire data is lost. Storing in a file will preserve your data even if
the program terminates.

o If you have to enter a large number of data, it will take a lot of time to enter them all.
However, if you have a file containing all the data, you can easily access the contents of the file
using few commands in C.

e You can easily move your data from one computer to another without any changes.

Types of Files
When dealing with files, there are two types of files you should know about:

1. Textfiles
2. Binary files

1. Text files
Text files are the normal .txt files that you can easily create using Notepad or any simple text editors.
When you open those files, you'll see all the contents within the file as plain text. You can easily edit or

delete the contents.
Narsimha Reddy Engineering College NRCM

They take minimum effort to maintain, are easily readable, and provide least security and takes bigger
storage space.

2. Binary files

Binary files are mostly the .bin files in your computer.

Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold higher amount of data, are not readable easily and provides a better security than text files.
File Operations

In C, you can perform four major operations on the file, either text or binary:

Creating a new file

Opening an existing file

Closing a file
Reading from and writing information to a file

Hwbnh e

Working with files

When working with files, you need to declare a pointer of type file. This declaration is needed for
communication between the file and program.

FILE *fptr;

Opening a file - for creation and edit

Opening a file is performed using the library function in the *'stdio.h™ header file: fopen().
The syntax for opening a file in standard 1/O is:

ptr = fopen("fileopen”,"mode")

For Example:

fopen("E:\\cprogram\\newprogram.txt","w");

fopen("E:\\cprogram\\oldprogram.bin™,"rb");

o Let's suppose the file newprogram.txt doesn't exist in the location E:\cprogram. The first function
creates a new file named newprogram.txt and opens it for writing as per the mode ‘w'.
The writing mode allows you to create and edit (overwrite) the contents of the file.

o Now let's suppose the second binary file oldprogram.bin exists in the location E:\cprogram. The
second function opens the existing file for reading in binary mode 'rb'.
The reading mode only allows you to read the file, you cannot write into the file.

Narsimha Reddy Engineering College NRCM

File .
! Meaning of Mode

Mode
r Open for reading.
rb Open for reading in binary mode.
w Open for writing.
wb Open for writing in binary mode.

Open for append. i.e, Data is added

to end of file.

ab Open for append in binary mode. i.e,
Data is added to end of file.

r+ Open for both reading and writing.

b+ Open for both reading and writing in
binary mode.

w+ Open for both reading and writing.

wh Qpen for both reading and writing in
binary mode.

at Open for both reading and
appending.

ab+ in binary mode.

Closing a File

During Inexistence of file

If the file does not exist, fopen() returns NULL.
If the file does not exist, fopen() returns NULL.

If the file exists, its contents are overwritten. If the file does
not exist, it will be created.

If the file exists, its contents are overwritten. If the file does
not exist, it will be created.

If the file does not exists, it will be created.

If the file does not exists, it will be created.

If the file does not exist, fopen() returns NULL.

If the file does not exist, fopen() returns NULL.

If the file exists, its contents are overwritten. If the file does
not exist, it will be created.

If the file exists, its contents are overwritten. If the file does
not exist, it will be created.

If the file does not exists, it will be created.

Open for both reading and appending If the file does not exists, it will be created.

The file (both text and binary) should be closed after reading/writing.

Closing a file is performed using library function fclose().

fclose(fptr); //fptr is the file pointer associated with file to be closed.

Reading and writing to a text file

Narsimha Reddy Engineering College

NRCM

For reading and writing to a text file, we use the functions fprintf() and fscanf().

They are just the file versions of printf() and scanf(). The only difference is that, fprint and fscanf expects a
pointer to the structure FILE.

Writing to a text file
Example 1: Write to a text file using fprintf()

#include <stdio.h>int main(){
int num;
FILE *fptr;

fptr = fopen("C:\\program.txt","w");

if(fptr == NULL)

{
printf("Error!");

exit(1);

printf("Enter num: *);

scanf("%d",&num);

fprintf(fptr,"%d",num);

fclose(fptr);

return 0;}
This program takes a number from user and stores in the file program.txt.

After you compile and run this program, you can see a text file program.txt created in C drive of your
computer. When you open the file, you can see the integer you entered.

Reading from a text file

Example 2: Read from a text file using fscanf()

Narsimha Reddy Engineering College NRCM

#include <stdio.h>int main(){
int num;

FILE *fptr;

if ((fptr = fopen("C:\\program.txt","r")) == NULL){

printf("Error! opening file");

Il Program exits if the file pointer returns NULL.

exit(1);

fscanf(fptr,"%d", &num);

printf("Value of n=%d", num);

fclose(fptr);

return 0;}
This program reads the integer present in the program.txt file and prints it onto the screen.

If you succesfully created the file from Example 1, running this program will get you the integer you
entered.

Other functions like fgetchar(), fputc() etc. can be used in similar way.
Reading and writing to a binary file

Functions fread() and fwrite() are used for reading from and writing to a file on the disk respectively in case
of binary files.

Writing to a binary file

To write into a binary file, you need to use the function fwrite(). The functions takes four arguments:
Address of data to be written in disk, Size of data to be written in disk, number of such type of data and
pointer to the file where you want to write.

fwrite(address_data,size_data,numbers_data,pointer_to_file);
Narsimha Reddy Engineering College NRCM

Example 3: Writing to a binary file using fwrite()

#include <stdio.h>
struct threeNum{
int n1, n2, n3;};
int main(){
int n;
struct threeNum num;

FILE *fptr;

if ((fptr = fopen("C:\\program.bin","wb")) == NULL){

printf("Error! opening file");

// Program exits if the file pointer returns NULL.

exit(1);

for(n =1; n <5; ++n)
{
num.nl =n;
num.n2 = 5n;
num.n3 =5n + 1;
fwrite(&num, sizeof(struct threeNum), 1, fptr);

}
fclose(fptr);

return 0;}

In this program, you create a new file program.bin in the C drive.

Narsimha Reddy Engineering College

NRCM

We declare a structure threeNum with three numbers - n1, n2 and n3, and define it in the main function as
num.

Now, inside the for loop, we store the value into the file using fwrite.

The first parameter takes the address of num and the second parameter takes the size of the structure
threeNum.

Since, we're only inserting one instance of num, the third parameter is 1. And, the last parameter *fptr points
to the file we're storing the data.

Finally, we close the file.

Reading from a binary file

Function fread() also take 4 arguments similar to fwrite() function as above.
fread(address_data,size_data,numbers_data,pointer_to file);

Example 4: Reading from a binary file using fread()

#include <stdio.h>
struct threeNum{
intnl, n2, n3;};
int main(){
intn;
struct threeNum num;

FILE *fptr;

if ((fptr = fopen("C:\\program.bin","rb™)) == NULL){

printf("Error! opening file");

// Program exits if the file pointer returns NULL.

exit(1);

for(n =1; n<5; ++n)

Narsimha Reddy Engineering College NRCM

fread(&num, sizeof(struct threeNum), 1, fptr);

printf(*'nl: %d\tn2: %d\tn3: %d", num.n1, num.n2, num.n3);

}
fclose(fptr);

return 0;}
In this program, you read the same file program.bin and loop through the records one by one.

In simple terms, you read one threeNum record of threeNum size from the file pointed by *fptr into the
structure num.

You'll get the same records you inserted in Example 3.
Getting data using fseek()

If you have many records inside a file and need to access a record at a specific position, you need to loop
through all the records before it to get the record.

This will waste a lot of memory and operation time. An easier way to get to the required data can be
achieved using fseek().

As the name suggests, fseek() seeks the cursor to the given record in the file.
Syntax of fseek()
fseek(FILE * stream, long int offset, int whence)

The first parameter stream is the pointer to the file. The second parameter is the position of the record to be
found, and the third parameter specifies the location where the offset starts.

Different Whence in fseek
Whence Meaning
SEKK_SET Starts the offset from the beginning of the file.
SEKK_END Starts the offset from the end of the file.

SEKK_CUR Starts the offset from the current location of the cursor in the file.

Example of fseek()

Narsimha Reddy Engineering College NRCM

#include <stdio.h>
struct threeNum{
intn1, n2, n3;};
int main(){
intn;
struct threeNum num;

FILE *fptr;

if ((fptr = fopen("C:\\program.bin","rb")) == NULL){

printf("Error! opening file");

I/ Program exits if the file pointer returns NULL.

exit(1);

/I Moves the cursor to the end of the file

fseek(fptr, sizeof(struct threeNum), SEEK_END);

for(n =1; n <5; ++n)

{
fread(&num, sizeof(struct threeNum), 1, fptr);

printf(*'nl: %d\tn2: %d\tn3: %d", num.n1, num.n2, num.n3);

}
fclose(fptr);

return 0;}

This program will start reading the records from the file program.bin in the reverse order (last to first) and

prints it.

Narsimha Reddy Engineering College

NRCM

C Programming Enumeration

In this article, you will learn to work with enumeration (enum). Also, you will learn where enums are
commonly used in C programming.

An enumeration is a user-defined data type that consists of integral constants. To define an enumeration,
keyword enum is used.

enum flag { constl, const2, ..., constN };
Here, name of the enumeration is flag.
And, constl, const2,...., constN are values of type flag.

By default, constl is 0, const2 is 1 and so on. You can change default values of enum elements during
declaration (if necessary).

/I Changing default values of enum
enum suit {
club =0,
diamonds = 10,
hearts = 20,
spades = 3,
h
Enumerated Type Declaration

When you create an enumerated type, only blueprint for the variable is created. Here's how you can create
variables of enum type.

enum boolean { false, true };

enum boolean check;

Here, a variable check of type enum boolean is created.

Here is another way to declare same check variable using different syntax.
enum boolean

{

false, true

} check;

Narsimha Reddy Engineering College NRCM

Example: Enumeration Type

#include <stdio.h>
enum week { sunday, monday, tuesday, wednesday, thursday, friday, saturday };
int main(){

enum week today;

today = wednesday;

printf("Day %d" today+1);

return 0;}
Output: Day 4
Why enums are used in C programming?
Enum variable takes only one value out of many possible values. Example to demonstrate it,

#include <stdio.h>
enum suit {
club =0,
diamonds = 10,
hearts = 20,
spades = 3} card,;
int main() {
card = club;
printf("Size of enum variable = %d bytes", sizeof(card));

return 0;}
Output
Size of enum variable = 4 bytes
It's because the size of an integer is 4 bytes.
This makes enum a good choice to work with flags.

You can accomplish the same task using structures. However, working with enums gives you efficiency
along with flexibility.

Narsimha Reddy Engineering College NRCM

How to use enums for flags?
Let us take an example,

enum designFlags {
ITALICS=1,
BOLD =2,

UNDERLINE = 4} button;

Suppose you are designing a button for Windows application. You can set flags ITALICS, BOLD and
UNDERLINE to work with text.

There is a reason why all the integral constants are power of 2 in above pseudocode.

/I In binary

ITALICS = 00000001
BOLD = 00000010

UNDERLINE = 00000100

Since, the integral constants are power of 2, you can combine two or more flags at once without overlapping
using bitwise OR | operator. This allows you to choose two or more flags at once. For example,

Example program:

#include <stdio.h>

enum designFlags {
BOLD =1,
ITALICS =2,
UNDERLINE = 4},

int main() {

int myDesign = BOLD | UNDERLINE;

1 00000001

/I 100000100

Narsimha Reddy Engineering College NRCM

1
1 00000101

printf("%d", myDesign);

return 0;}

Output

When the output is 5, you always know that bold and underline is used.
Also, you can add flag to your requirements.

if (myDesign & ITALICS) {

/I code for italics
}

Here, we have added italics to our design. Note, only code for italics is written inside if statement.

You can accomplish almost anything in C programming without using enumerations. However, they can be
pretty handy in certain situations. That's what differentiates good programmers from great programmers.

String operations (string.h)

language recognizes that strings are terminated by null character and is a different class of array by letting us
input and output the array as a unit. To array out many of the string manipulations,C library supports a large
number of string handling functions that can be used such as:

1. Length (number of characters in the string).

2. Concatentation (adding two are more strings)

3. Comparing two strings.

4. Substring (Extract substring from a given string)

5. Copy(copies one string over another)

strlen():

The strlen() function calculates the length of a given string.

/[calculates the length of string before null charcter.

Narsimha Reddy Engineering College NRCM

Example: C strlen() function
#include <stdio.h>
#include <string.h>
int main()
{
char a[20]="Program";
char b[20]={'P",'r';'0",'g",'r",'a’,;)m',\0'};
char c[20];
printf("Enter string: ");
gets(c);
printf(""Length of string a = %d \n",strlen(a));
/[calculates the length of string before null charcter.
printf("Length of string b = %d \n",strlen(b));
printf("Length of string ¢ = %d \n",strlen(c));

return O;

Output

Enter string: String
Length of stringa=7
Length of stringb =7

Length of stringc =6

2.strepy():

The strcpy() function copies the string pointed by source (including the null character) to the character array
destination.

This function returns character array destination.
The strcpy() function is defined in string.h header file.

Example: C strcpy()
Narsimha Reddy Engineering College NRCM

#include <stdio.h>

#include <string.h>

int main()

{
char str1[10]= "awesome";
char str2[10];
char str3[10];

strepy(str2, strl);
strcpy(str3, "well™);
puts(str2);
puts(str3);

return O;

Output
awesome

well

[* strncpy example */
#include <stdio.h>
#include <string.h>
int main ()

{
char stri[]="To be or not to be™;
char str2[40];
char str3[40];
strncpy (str2, strl);

[* partial copy (only 5 chars): */

Narsimha Reddy Engineering College

NRCM

strncpy (str3, str2, 5);
puts (strl);
puts (str2);
puts (str3);
return O;
}
Output:
To be or not to be
To be or not to be

To be

strcat():
The function strcat() concatenates two strings.

In C programming, strcat() concatenates (joins) two strings.

The strcat() function is defined in <string.h> header file

#include <stdio.h>

#include <string.h>

int main()

{
char strl[] = "hello i am ", str2[] = "sarfaraz™;
/lconcatenates strl and str2 and resultant string is stored in strl.

strcat(strl,str2);//strl=strl1+str2;

puts(strl);
puts(str2);
return O;
}
Output

hello i am sarfaraz

Narsimha Reddy Engineering College NRCM

sarfaraz

[* strncat example */
#include <stdio.h>

#include <string.h>

int main ()
{
char str1[20];
char str2[20];
strcpy (strl,"hello™);
strcpy (str2,"good afternoon™);
strncat (strl, str2, 7);
puts (strl);

return O;

Edit & Run
Output:

hellogood af

striwr():
strlwr(') function converts a given string into lowercase.

Syntax for strlwr(') function is given below.

Narsimha Reddy Engineering College NRCM

#include<stdio.h>
#include<string.h>
int main()

{
char str[] = "MODIFY This String To LOwer";
printf("%s\n" striwr (str));
return O;

}

Output:

modify this string to lower

strupr() function converts a given string into uppercase.

Syntax for strupr() function is given below.

#include<stdio.h>
#include<string.h>
int main()

{
char str[] = "i am sarfaraz";
printf("%s\n" strupr (str));
return 0;

}

Output:

| AM SARFARAZ

Strrev(): reverse the given string

#include<stdio.h>

#include<string.h>

int main()

{

Narsimha Reddy Engineering College

NRCM

char name[30] = "Hello™;

printf("String before strrev() : %s\n",name);

printf("String after strrev() : %s",strrev(name));

return O;
}
Output:
String before strrev() : Hello
String after strrev() : olleH
strcemp() function in C compares two given strings and returns zero if they are same.

*If length of string1 < string2, it returns < 0 value. If length of stringl > string?2, it returns > 0 value. Syntax
for strcmp() function is given below.

#include <stdio.h>
#include <string.h>
int main()
{
char stri[] = "fresh" ;
char str2[] = "refresh” ;
inti,j, k;
i = strcmp (strl, "fresh™) ;
Jj =stremp (strl, str2) ;
k = strcmp (strl, "f");
printf ("\n%d %d %d", i, j, k) ;
return O;
}
Output:

0-11
Narsimha Reddy Engineering College NRCM

strcmpi() function in C is same as strcmp() function. But, strempi() function is not case sensitive. i.e, “A”
and “a” are treated as same characters. Where as, strcmp() function treats “A” and “a” as different
characters.

#include <stdio.h>
#include <string.h>
int main()
{
char strl[] = "fresh" ;
char str2[] = "refresh" ;
inti,j, k;
i = strcmpi (strl, "FRESH") ;
J = strcmpi (strd, str2) ;
k = strcmpi (strl, ") ;
printf ("\n%d %d %d", i, j, k) ;
return O;
}
Output:

0-11

strchr():

strchr() function returns pointer to the first occurrence of the character in a given string. Syntax for strchr()
function is given below

#include <stdio.h>
#include <string.h>
int main ()

{
char string[55] ="This is a string for testing™;
char *p;

p = strchr (string,'1);
Narsimha Reddy Engineering College NRCM

printf ("Character i is found at position %d\n",p-string+1);

printf ("First occurrence of character \"i\" in \"%s\" is \"%s\"",string, p);

return O;
}
Output:
Character i is found at position 3

[13¢2]

First occurrence of character “i” in “This is a string for testing” is “is is a string for testing”

#include <stdio.h>
#include <string.h>
int main ()
{
char string[55] ="This is a string for testing™;
char *p;
intk =1,
p = strchr (string,'i’);
while (p!=NULL)
{
printf ("Character i found at position %d\n",p-string+1);
printf ("Occurrence of character \"i\" : %d \n" k);
printf ("Occurrence of character \"i\" in \"%s\" is \"%s" \
"\"\n",string, p);
p=strchr(p+1,'1");
K++;
}
return O;

Narsimha Reddy Engineering College NRCM

Output:

Character i is found at position 3

Occurrence of character “i” : 1

Occurrence of character “i” in “This is a string for testing” is “is is a string for testing”
Character i is found at position 6

Occurrence of character “1” : 2

Occurrence of character “1” in “This is a string for testing” is “is a string for testing”
Character i is found at position 14

Occurrence of character “i” : 3

Occurrence of character “1” in “This is a string for testing” 1s “ing for testing”
Character i is found at position 26

Occurrence of character “i” : 4

Occurrence of character “i” in “This is a string for testing” is “ing”

strrchr();

strrchr (1) last occurrence of given character in a string is found
#include <stdio.h>
#include <string.h>
int main ()
{
char string[55] ="Hello world";
char *p;

p = strchr (string,'l');

printf ("Character i is found at position %d\n",p-string+1);

printf ("last occurrence of character \"I\" in \"%s\" is \"%s\"",string, p);

Narsimha Reddy Engineering College NRCM

return O;
}
Character i is found at position 10

First occurrence of character “I” in “Hello world” is “I1d”

strstr():

strstr() function returns pointer to the first occurrence of the string in a given string.

include <stdio.h>
#include <string.h>
int main ()
{
char string[55] ="This is a test string for testing™;
char *p;
p = strstr (string,"test");
if(p)
{
printf("'string found\n");
printf ("First occurrence of string \"test\" in \"%s\" is \"%s\"",string, p);
}
else printf("string not found\n™);

return O;

Output:
string found

First occurrence of string “test” in “This is a test string for testing” is “test string for testing”

Narsimha Reddy Engineering College

NRCM

C —strdup() function

sstrdup() function in C duplicates the given string.

#include <stdio.h>
#include <string.h>
int main()
{
char *pl = "Raja";
char *p2;
p2 = strdup(pl);
printf("Duplicated string is : %s", p2);
return O;
}
Output:
Duplicated string is : Raja

note :strdup allocates memory for the new string on the heap, while using strcpy (or its safer strncpy varient)
I can copy a string to a pre allocated memory on either the heap or the stack. char *strdup(char *pszSrch) ;
strdup will allocate storage the size of the original string

C —strset() function
sstrset() function sets all the characters in a string to given character.
#include<stdio.h>
#include<string.h>
int main()
{
char str[20] = "Test String";
printf("Original string is : %s", str);
printf("Test string after strset() : %s" strset(str,'#"));

Narsimha Reddy Engineering College NRCM

printf(" After string set: %s",str);

return O;
}
Output:
Original string is : Test String
Test string after strset() | R

C —strnset() function
strnset() function sets portion of characters in a string to given.
strnset() function is non standard function which may not available in standard library in C.
#include<stdio.h>
#include<string.h>
int main()
{
char str[20] = "Test String";
printf("Original string is : %s", str);
printf(""Test string after string n set : %s", strnset(str,'#',4));

printf("After string n set : %s", str);

return O;
}
Output:
Original string is : Test String
Test string after string set | ##HHE String

C —strtok() function

strtok() function in C tokenizes/parses the given string using delimiter.

Narsimha Reddy Engineering College NRCM

#include <stdio.h>
#include <string.h>
int main ()

{
char string[50] ="Test,string1, Test,string2: Test:string3";
char *p;
printf ("String \"%s\" is split into tokens:\n" string);

p = strtok (string,",:");
while (p!= NULL)
{

printf ("%s\n",p);

p = strtok (NULL, ",:");

ks

return O;

Output:
String “Test,string1,Test,string2:Test:string3” is split into tokens:
Test
stringl
Test
string2
Test

string3

Introduction to Data Structures

Data Structure is a way of collecting and organising data in such a way that we can perform operations on
these data in an effective way. Data Structures is about rendering data elements in terms of some
relationship, for better organization and storage. For example, we have data player's name "Virat" and age
26. Here "Virat" is of String data type and 26 is of integer data type.

Narsimha Reddy Engineering College NRCM

We can organize this data as a record like Player record. Now we can collect and store player's records in a
file or database as a data structure. For example: "Dhoni* 30, "Gambhir" 31, "Sehwag" 33

In simple language, Data Structures are structures programmed to store ordered data, so that various
operations can be performed on it easily.

Basic types of Data Structures

As we discussed above, anything that can store data can be called as a data strucure, hence Integer, Float,
Boolean, Char etc, all are data structures. They are known as Primitive Data Structures.

Then we also have some complex Data Structures, which are used to store large and connected data. Some
example of Abstract Data Structure are :

. Linked List

. Tree

. Graph

. Stack, Queue etc.

All these data structures allow us to perform different operations on data. We select these data structures
based on which type of operation is required. We will look into these data structures in more details in our
later lessons.

Cata Structures

Built-in Data User Defined
Structures Data Structures
I [
| | I | |
Integer Float Character Pointer Arrays Lists Files
| Linear Lists | Mon-Linear Lists

|
IE::k_s| |C1IJEIJES| |Tr&&s| |Grﬂphs|

INTRODUCTION TO DATA STRUCTURES

What is Algorithm ?

An algorithm is a finite set of instructions or logic, written in order, to accomplish a certain predefined task.
Algorithm is not the complete code or program, it is just the core logic(solution) of a problem, which can be
expressed either as an informal high level description as pseudocode or using a flowchart.

An algorithm is said to be efficient and fast, if it takes less time to execute and consumes less memory space.
The performance of an algorithm is measured on the basis of following properties :

1. Time Complexity
Narsimha Reddy Engineering College NRCM

2. Space Complexity

Space Complexity

Its the amount of memory space required by the algorithm, during the course of its execution. Space
complexity must be taken seriously for multi-user systems and in situations where limited memory is
available.

An algorithm generally requires space for following components :

. Instruction Space : Its the space required to store the executable version of the program. This space
is fixed, but varies depending upon the number of lines of code in the program.

. Data Space : Its the space required to store all the constants and variables value.

. Environment Space : Its the space required to store the environment information needed to resume

the suspended function.

Time Complexity

Time Complexity is a way to represent the amount of time needed by the program to run to completion. We
will study this in detail.

Time Complexity of Algorithms

Time complexity of an algorithm signifies the total time required by the program to run to completion. The
time complexity of algorithms is most commonly expressed using the big O notation.

Time Complexity is most commonly estimated by counting the number of elementary functions performed
by the algorithm. And since the algorithm's performance may vary with different types of input data, hence
for an algorithm we usually use the worst-case Time complexity of an algorithm because that is the
maximum time taken for any input size.

Calculating Time Complexity

Now lets tap onto the next big topic related to Time complexity, which is How to Calculate Time
Complexity. It becomes very confusing some times, but we will try to explain it in the simplest way.

Now the most common metric for calculating time complexity is Big O notation. This removes all constant
factors so that the running time can be estimated in relation to N, as N approaches infinity. In general you
can think of it like this :

statement;

Above we have a single statement. Its Time Complexity will be Constant. The running time of the
statement will not change in relation to N.

for(i=0; i < N; i++)
Narsimha Reddy Engineering College NRCM

statement;

¥

The time complexity for the above algorithm will be Linear. The running time of the loop is directly
proportional to N. When N doubles, so does the running time.

for(i=0; i < N; i++)

{
for(j=0; j < N;j++)
{

statement;

ky

This time, the time complexity for the above code will be Quadratic. The running time of the two loops is
proportional to the square of N. When N doubles, the running time increases by N * N.

while(low <= high)
{
mid = (low + high) / 2;
if (target < list[mid])
high = mid - 1;
else if (target > listfmid])
low = mid + 1;
else break;

¥

This is an algorithm to break a set of numbers into halves, to search a particular field(we will study this in
detail later). Now, this algorithm will have a Logarithmic Time Complexity. The running time of the
algorithm is proportional to the number of times N can be divided by 2(N is high-low here). This is because
the algorithm divides the working area in half with each iteration.

void quicksort(int list[], int left, int right)

{
int pivot = partition(list, left, right);
quicksort(list, left, pivot - 1);
quicksort(list, pivot + 1, right);

Narsimha Reddy Engineering College NRCM

¥

Taking the previous algorithm forward, above we have a small logic of Quick Sort(we will study this in
detail later). Now in Quick Sort, we divide the list into halves every time, but we repeat the iteration N
times(where N is the size of list). Hence time complexity will be N*log(N). The running time consists of N
loops (iterative or recursive) that are logarithmic, thus the algorithm is a combination of linear and
logarithmic.

NOTE : In general, doing something with every item in one dimension is linear, doing something with
every item in two dimensions is quadratic, and dividing the working area in half is logarithmic.

Types of Notations for Time Complexity
Now we will discuss and understand the various notations used for Time Complexity.

Big Oh denotes "fewer than or the same as"<expression> iterations.
Big Omega denotes "more than or the same as"<expression> iterations.
Big Theta denotes "the same as"<expression> iterations.

Little Oh denotes "fewer than"<expression> iterations.

Little Omega denotes "more than"<expression> iterations.

ok~ wbnh e

Understanding Notations of Time Complexity with Example

O(expression) is the set of functions that grow slower than or at the same rate as expression.
Omega(expression) is the set of functions that grow faster than or at the same rate as expression.
Theta(expression) consist of all the functions that lie in both O(expression) and Omega(expression).
Suppose you've calculated that an algorithm takes f(n) operations, where,

f(n) = 3*n"2 + 2*n + 4. /[n™2 means square of n

Since this polynomial grows at the same rate as n”*2, then you could say that the function f lies in the
setTheta(n”2). (It also lies in the sets O(n"2) and Omega(n”2) for the same reason.)

The simplest explanation is, because Theta denotes the same as the expression. Hence, as f(n) grows by a
factor of n”*2, the time complexity can be best represented as Theta(n”*2).

Introduction to Sorting

Sorting is nothing but storage of data in sorted order, it can be in ascending or descending order. The term
Sorting comes into picture with the term Searching. There are so many things in our real life that we need to
search, like a particular record in database, roll numbers in merit list, a particular telephone number, any
particular page in a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record which is going to be sorted
will contain one key. Based on the key the record will be sorted. For example, suppose we have a record of
students, every such record will have the following data:

. Roll No.
N Name

o Age

. Class

Narsimha Reddy Engineering College NRCM

Here Student roll no. can be taken as key for sorting the records in ascending or descending order. Now
suppose we have to search a Student with roll no. 15, we don't need to search the complete record we will
simply search between the Students with roll no. 10 to 20.

Sorting Efficiency

There are many techniques for sorting. Implementation of particular sorting technique depends upon
situation. Sorting techniques mainly depends on two parameters. First parameter is the execution time of
program, which means time taken for execution of program. Second is the space, which means space taken
by the program.

Types of Sorting Techniques

There are many types of Sorting techniques, differentiated by their efficiency and space requirements.
Following are some sorting techniques which we will be covering in next sections.

Bubble Sort
Insertion Sort
Selection Sort
Quick Sort
Merge Sort
Heap Sort

S

Bubble Sorting

Bubble Sort is an algorithm which is used to sort N elements that are given in a memory for eg: an Array
withN number of elements. Bubble Sort compares all the element one by one and sort them based on their
values.

It is called Bubble sort, because with each iteration the smaller element in the list bubbles up towards the
first place, just like a water bubble rises up to the water surface.

Sorting takes place by stepping through all the data items one-by-one in pairs and comparing adjacent data
items and swapping each pair that is out of order.

g5 1 [2 4 3 Lets take this Array.
] 1 6 2 4 3
— Here we can see the Array
1 5 6 2 4 3 after the first iteration.
1 > 2 EI—4 3 Similarly, after other
1 g 7 4 G 3 consecutive iterations, this

— array will get sorted.

Sorting using Bubble Sort Algorithm
Let's consider an array with values {5, 1, 6, 2, 4, 3}

Narsimha Reddy Engineering College NRCM

int a[6] = {5, 1, 6, 2, 4, 3};
int i, j, temp;
for(i=0; i<6, i++)
{
for(j=0; j<6-i-1; j++)
{
if(afi] > a[j+1])
{
temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;
}
}
}
/Inow you can print the sorted array after this

Above is the algorithm, to sort an array using Bubble Sort. Although the above logic will sort and unsorted
array, still the above algorithm isn't efficient and can be enhanced further. Because as per the above logic,
the for loop will keep going for six iterations even if the array gets sorted after the second iteration.

Hence we can insert a flag and can keep checking whether swapping of elements is taking place or not. If no
swapping is taking place that means the array is sorted and wew can jump out of the for loop.

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, temp;
for(i=0; i<6, i++)
{
for(j=0; j<6-i-1; j++)
{
int flag = 0; /ltaking a flag variable
if(afj] > afj+1])
{
temp = afj];
al[j] = afj+1];
a[j+1] = temp;
flag = 1; /[setting flag as 1, if swapping occurs
}
}
if('flag) /lbreaking out of for loop if no swapping takes place
{
break;

Narsimha Reddy Engineering College NRCM

¥

In the above code, if in a complete single cycle of j iteration(inner for loop), no swapping takes place, and
flag remains 0, then we will break out of the for loops, because the array has already been sorted.

Complexity Analysis of Bubble Sorting

In Bubble Sort, n-1 comparisons will be done in 1st pass, n-2 in 2nd pass, n-3 in 3rd pass and so on. So the
total number of comparisons will be

(n-1)+(n-2)+(n-3)+.....+3+2+1

Sum = n(n-1)/2

i.e O(nd

Hence the complexity of Bubble Sort is O(n?).

The main advantage of Bubble Sort is the simplicity of the algorithm.Space complexity for Bubble Sort
is O(1), because only single additional memory space is required for temp variable

Best-case Time Complexity will be O(n), it is when the list is already sorted.
Insertion Sorting

It is a simple Sorting algorithm which sorts the array by shifting elements one by one. Following are some of
the important characteristics of Insertion Sort.

1. It has one of the simplest implementation
2. It is efficient for smaller data sets, but very inefficient for larger lists.
3. Insertion Sort is adaptive, that means it reduces its total number of steps if given a partially sorted list,
hence it increases its efficiency.
4. It is better than Selection Sort and Bubble Sort algorithms.
5. Its space complexity is less, like Bubble Sorting, inerstion sort also requires a single additional
memory space.
6. It is Stable, as it does not change the relative order of elements with equal keys
2 4 1 7 a 9 Unsorted List
. B
position position
1 2 4 4 7 9 1 2 4 4 7 9
A B B A
Stable Sort, because the order of UnStable Sort, because the order
equal elements is maintained in of equal elements is not
sorted list. maintained in the sorted list.

How Insertion Sorting Works

Narsimha Reddy Engineering College NRCM

5 1 5] > 4 = Lets take this Array.
As we can see here. in
insertion sort, we pick up a
kew., and compares it with
% 6 2 4 3 elemnts ahead of it. and
puts the key in the right
1 5 (g 2 4 3 sl
5 has nothing before it
1 2 5 6 3
1 is compared to 5 and is
1 P 4 5 5 inserted before 5.
6 is greater than 5 and 1.

. 2 is smaller than 6 and 5,
{ Abways we start with the second but greater than 1, so its is

element as key.) inserted after 1.

And this goes on.__

Sorting using Insertion Sort Algorithm
int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, key;
for(i=1; i<6; i++)
{
key = a[i];
j = i-1;
while(j>=0 && key < a[j])
{
a[j+1] = afjl;
J=
}
afj+1] = key;
}

Now lets, understand the above simple insertion sort algorithm. We took an array with 6 integers. We took a
variable key, in which we put each element of the array, in each pass, starting from the second element, that
is a[1].

Then using the while loop, we iterate, until j becomes equal to zero or we find an element which is greater
than key, and then we insert the key at that position.

In the above array, first we pick 1 as key, we compare it with 5(element before 1), 1 is smaller than 5, we
shift 1 before 5. Then we pick 6, and compare it with 5 and 1, no shifting this time. Then 2 becomes the key
and is compared with, 6 and 5, and then 2 is placed after 1. And this goes on, until complete array gets
sorted.

Complexity Analysis of Insertion Sorting

Worst Case Time Complexity : O(n?)

Best Case Time Complexity : O(n)

Average Time Complexity : O(n?)

Space Complexity : O(1)Selection Sorting

Selection sorting is conceptually the most simplest sorting algorithm. This algorithm first finds the smallest
element in the array and exchanges it with the element in the first position, then find the second smallest

Narsimha Reddy Engineering College NRCM

element and exchange it with the element in the second position, and continues in this way until the entire
array is sorted.

How Selection Sorting Works

Orriginal After st After 2nd After 3rd After 4th After Sth
Array pass pass pass pass pass

3 1 1 1 1 1

6) -5 - 3 3 3 3

Q) ©) e 4 4 4

8 8 8 8 5 5

4 4 @ 6 O] 6

5 5 5 & 8 8

In the first pass, the smallest element found is 1, so it is placed at the first position, then leaving first element,
smallest element is searched from the rest of the elements, 3 is the smallest, so it is then placed at the second
position. Then we leave 1 nad 3, from the rest of the elements, we search for the smallest and put it at third
position and keep doing this, until array is sorted.

Sorting using Selection Sort Algorithm
void selectionSort(int a[], int size)

{
int i, j, min, temp;
for(i=0; i < size-1; i++)
{
min = i; //setting min as i
for(j=i+1; j < size; j++)
{
if(a[j] < a[min]) //if element at j is less than element at min position
{
min = j; /lthen set min as |
}
}
temp = a[i];
a[i] = a[min];
a[min] = temp;
}
}

Complexity Analysis of Selection Sorting

Worst Case Time Complexity : O(n?)

Best Case Time Complexity : O(n?)

Narsimha Reddy Engineering College NRCM

Average Time Complexity : O(n?)
Space Complexity : O(1)

Quick Sort Algorithm
Quick Sort, as the name suggests, sorts any list very quickly. Quick sort is not stable search, but it is very

fast and requires very less aditional space. It is based on the rule of Divide and Conquer(also
called partition-exchange sort). This algorithm divides the list into three main parts :

1. Elements less than the Pivot element
2. Pivot element
3. Elements greater than the pivot element

In the list of elements, mentioned in below example, we have taken 25 as pivot. So after the first pass, the
list will be changed like this.

6817 1425633752

Hnece after the first pass, pivot will be set at its position, with all the elements smaller to it on its left and all
the elements larger than it on the right. Now 6 8 17 14 and 63 37 52 are considered as two separate lists, and
same logic is applied on them, and we keep doing this until the complete list is sorted.

How Quick Sorting Works

25 52 37 63 14 17 5] B
. ,-
pivot here also we will keep

Mow we will keep on
traversing the list,
if ali]<pivot & ali]l=pivot

on traversing the list
from back,
if a[j]=pivot & a[j]'=pivot

if both sides we find the element
not satisfying their respective
conditions, we swap them. And
keep repeating this

DIVIDE AND COMQUER - QUICK SORT

Sorting using Quick Sort Algorithm
[* &[] is the array, p is starting index, that is O,
and r is the last index of array. */

void quicksort(int af], int p, int r)
{
ifp <)
{
int q;
Narsimha Reddy Engineering College NRCM

q = partition(a, p, r);
quicksort(a, p, q);
quicksort(a, g+1, r);

int partition(int a[], int p, int r)
{
int i, j, pivot, temp;
pivot = a[p];
i =p;
=
while(1)
{
while(a[i] < pivot && a[i] != pivot)
i++;
while(a[j] > pivot && a[j] != pivot)
J-
if(i < j)
{
temp = aJi];
afi] = afjl;
a[j] = temp;
}

else

{
return j;
}
}
}

Complexity Analysis of Quick Sort
Worst Case Time Complexity : O(n?)
Best Case Time Complexity : O(n log n)
Average Time Complexity : O(n log n)
Space Complexity : O(n log n)

Narsimha Reddy Engineering College

NRCM

Space required by quick sort is very less, only O(n log n) additional space is required.
Quick sort is not a stable sorting technique, so it might change the occurence of two similar elements

in the list while sorting.

Merge Sort Algorithm

Merge Sort follows the rule of Divide and Conquer. But it doesn't divides the list into two halves. In merge
sort the unsorted list is divided into N sublists, each having one element, because a list of one element is
considered sorted. Then, it repeatedly merge these sublists, to produce new sorted sublists, and at lasts one
sorted list is produced.

Merge Sort is quite fast, and has a time complexity of O(n log n). It is also a stable sort, which means the
"equal” elements are ordered in the same order in the sorted list.

How Merge Sort Works

Sorted sequence

1 2 2 3 4 5 6 6
merge
| 2 a 5 s | | - 2 3 s |
merge merge
1
merge merge merge merge

1 [=1 1 =1 1 1

intial sequense

Like we can see in the above example, merge sort first breaks the unsorted list into sorted sublists, and then
keep merging these sublists, to finlly get the complete sorted list.

Sorting using Merge Sort Algorithm
[* &[] is the array, p is starting index, that is O,
and r is the last index of array. */

Lets take a[5] = {32, 45, 67, 2, 7} as the array to be sorted.

Narsimha Reddy Engineering College NRCM

void mergesort(int a[], int p, int r)
{
int q;
if(p <)
{
q = floor((pt+r) / 2);
mergesort(a, p, q);
mergesort(a, g+1, r);
merge(a, p, g, 1);

void merge(int a[], int p, int g, int r)

{
int b[3]; llsame size of a[]
int i, j, k;
k =0;
i =p;
j =gt
while(i <= q && j <= 1)
{
if@a[i] < a[j])
{
b[k++] = a[i++]; /I same as b[K]=a[i]; k++; i++;
}
else
{
b[k++] = a[j++];
}
}
while(i <= q)
{
b[k++] = a[i++];
}
while(j <= r)

Narsimha Reddy Engineering College NRCM

blk++] = alj+];

for(i=r; i >= p; i--)
{
a[i] = b[--K]; /I copying back the sorted list to a[]

Complexity Analysis of Merge Sort
Worst Case Time Complexity : O(n log n)
Best Case Time Complexity : O(n log n)
Average Time Complexity : O(n log n)
Space Complexity : O(n)

. Time complexity of Merge Sort is O(n Log n) in all 3 cases (worst, average and best) as merge sort
always divides the array in two halves and take linear time to merge two halves.

. It requires equal amount of additional space as the unsorted list. Hence its not at all recommended for
searching large unsorted lists.

. It is the best Sorting technique for sorting Linked Lists.

Heap Sort Algorithm

Heap Sort is one of the best sorting methods being in-place and with no quadratic worst-case scenarios.
Heap sort algorithm is divided into two basic parts :

. Creating a Heap of the unsorted list.
. Then a sorted array is created by repeatedly removing the largest/smallest element from the heap,
and inserting it into the array. The heap is reconstructed after each removal.

What is a Heap ?
Heap is a special tree-based data structure, that satisfies the following special heap properties :

1. Shape Property : Heap data structure is always a Complete Binary Tree, which means all levels of
the tree are fully filled.

Narsimha Reddy Engineering College NRCM

Complete Binary Tree In-Complete Binary Tree

2. Heap Property : All nodes are either [greater than or equal to] or [less than or equal to] each of its
children. If the parent nodes are greater than their children, heap is called a Max-Heap, and if the parent
nodes are smalled than their child nodes, heap is called Min-Heap.

Min-Heap Max-Heap

In min-heap, first element is
the smallest. S0 when we want
to sort a list in ascending
order, we create a Min-heap
from that list, and picks the
first element, as it is the
smallest, then we repeat the
process with remaining
elements.

In max-heap, the first
glement is the largest, hence
it is used when we need to
sort a list in descending
order.

How Heap Sort Works

Initially on receiving an unsorted list, the first step in heap sort is to create a Heap data structure(Max-Heap
or Min-Heap). Once heap is built, the first element of the Heap is either largest or smallest(depending upon
Max-Heap or Min-Heap), so we put the first element of the heap in our array. Then we again make heap
using the remaining elements, to again pick the first element of the heap and put it into the array. We keep
on doing the same repeatedly untill we have the complete sorted list in our array.

In the below algorithm, initially heapsort() function is called, which calls buildheap() to build heap, which
inturn uses satisfyheap() to build the heap.

Narsimha Reddy Engineering College NRCM

Sorting using Heap Sort Algorithm
/* Below program is written in C++ language */

void heapsort(int[], int);
void buildheap(int [], int);
void satisfyheap(int [], int, int);

void main()
{
int a[10], i, size;
cout <<"Enter size of list"; /I less than 10, because max size of array is 10
cin >> size;
cout <<"Enter'"<< size <<"elements";

for(i=0; i < size; i++)

{
cin >> a[i;
}
heapsort(a, size);
getch();

void heapsort(int a[], int length)
{
buildheap(a, length);
int heapsize, i, temp;
heapsize = length - 1,
for(i=heapsize; i >= 0; i--)
{
temp = a[0];
a[0] = a[heapsize];
a[heapsize] = temp;
heapsize--;
satisfyheap(a, 0, heapsize);
}
for(i=0; 1 < length; i++)
{

cout <<"\t"<< aJil;

Narsimha Reddy Engineering College NRCM

void buildheap(int a[], int length)
{
int i, heapsize;
heapsize = length - 1;
for(i=(length/2); i >= 0; i--)
{
satisfyheap(a, i, heapsize);
}
}

void satisfyheap(int a[], int i, int heapsize)
{
int I, r, largest, temp;
| = 2%i;
r=2% +1;
if(l <= heapsize && a[l] > ali])
{

largest

¥

else

{

largest

}
if(r <= heapsize && a[r] > a[largest])

{

largest = r;

}
if(largest = 1)

{

temp = a[i];

a[i] = a[largest];
a[largest] = temp;
satisfyheap(a, largest, heapsize);

¥

Narsimha Reddy Engineering College

NRCM

Complexity Analysis of Heap Sort

Worst Case Time Complexity : O(n log n)
Best Case Time Complexity : O(n log n)
Average Time Complexity : O(n log n)
Space Complexity : O(n)

. Heap sort is not a Stable sort, and requires a constant space for sorting a list.
. Heap Sort is very fast and is widely used for sorting.

Searching Algorithms on Array

Before studying searching algorithms on array we should know what is an algorithm?

An algorithm is a step-by-step procedure or method for solving a problem by a computer in a given number
of steps. The steps of an algorithm may include repetition depending upon the problem for which the
algorithm is being developed. The algorithm is written in human readable and understandable form. To
search an element in a given array, it can be done in two ways Linear search and Binary search.

Linear Search

A linear search is the basic and simple search algorithm. A linear search searches an element or value from
an array till the desired element or value is not found and it searches in a sequence order. It compares the
element with all the other elements given in the list and if the element is matched it returns the value index
else it return -1. Linear Search is applied on the unsorted or unordered list when there are fewer elements in
a list.

Example with Implementation
To search the element 5 it will go step by step in a sequence order.

function findIndex(values, target)
{
for(var i = 0; i < values.length; ++i)

{

Narsimha Reddy Engineering College NRCM

if (values[i] == target)

{
return i;
}
}
return -1;

¥

[lcall the function findIndex with array and number to be searched
findIndex([8 , 2,6 ,3,5],05);

Binary Search

Binary Search is applied on the sorted array or list. In binary search, we first compare the value with the
elements in the middle position of the array. If the value is matched, then we return the value. If the value is
less than the middle element, then it must lie in the lower half of the array and if it's greater than the element
then it must lie in the upper half of the array. We repeat this procedure on the lower (or upper) half of the
array. Binary Search is useful when there are large numbers of elements in an array.

Example with Implementation
To search an element 13 from the sorted array or list.

As we can see the above array is sorted in ascending order.

Binary Search is applied on sorted lists only, so that we can
make the search fast, by breaking the list everytime.

Start with middle element,

if its EQUAL to the number we are searching, then RETURN
if its less than it, then move to the RIGHT.

if its maore that it, then move to the LEFT.

And then, REPEAT, till you find the number.

function findIndex(values, target)

{

return binarySearch(values, target, 0, values.length - 1);

};

Narsimna Keaay tngineering Lollege NRLM

function binarySearch(values, target, start, end) {
if (start > end) { return -1; } //does not exist

var middle = Math.floor((start + end) / 2);
var value = values[middle];

if (value > target) { return binarySearch(values, target, start, middle-1); }
if (value < target) { return binarySearch(values, target, middle+1, end); }
return middle; //found!

findIndex([2, 4, 7, 9, 13, 15], 13);

In the above program logic, we are first comparing the middle number of the list, with the target, if it
matches we return. If it doesn't, we see whether the middle number is greater than or smaller than the target.

If the Middle number is greater than the Target, we start the binary search again, but this time on the left half
of the list, that is from the start of the list to the middle, not beyond that.

If the Middle number is smaller than the Target, we start the binary search again, but on the right half of the
list, that is from the middle of the list to the end of the list.

Stacks

Stack is an abstract data type with a bounded(predefined) capacity. It is a simple data structure that allows
adding and removing elements in a particular order. Every time an element is added, it goes on the top of the
stack, the only element that can be removed is the element that was at the top of the stack, just like a pile of
objects.

r— — — — 7

/l—\
/:H Steed = ong)
push() | |
| |
| |
| | STACK
| | DATA STRUCTURE
| |
| I
L 1

Basic features of Stack

Narsimha Reddy Engineering College NRCM

1. Stack is an ordered list of similar data type.
2. Stack is a LIFO structure. (Last in First out).
3. push() function is used to insert new elements into the Stack and pop() is used to delete an element

from the stack. Both insertion and deletion are allowed at only one end of Stack called Top.
4. Stack is said to be in Overflow state when it is completely full and is said to be in Underflow state if
it is completely empty.

Applications of Stack

The simplest application of a stack is to reverse a word. You push a given word to stack - letter by letter -
and then pop letters from the stack.

There are other uses also like : Parsing, Expression Conversion(Infix to Postfix, Postfix to Prefix etc) and
many more.

Implementation of Stack

Stack can be easily implemented using an Array or a Linked List. Arrays are quick, but are limited in size
and Linked List requires overhead to allocate, link, unlink, and deallocate, but is not limited in size. Here we
will implement Stack using array.

N

STACK - LIFO Structure

//rh\ﬁsf pop(]

3

=\

push(

1 1

Empty Stack

n a Stack, all operations take place at the "top" of the
stack. The "push” operation adds an item to the top of the
Stack.

The "pop" cperation removes the item on top of the stack.

/* Below program is written in C++ language */

Class Stack
{
int top;
public:
int a[10]; //Maximum size of Stack

Stack()
Narsimha Reddy Engineering College NRCM

void Stack::push(int x)

{
if(top >= 10)
{

cout <<"Stack Overflow";

¥

else

{
a[++top] = x;
cout <<"Element Inserted";

int Stack::pop()
{
if(top < 0)
{
cout <<"Stack Underflow";
return O;

¥

else

{
int d = a[--top];
return d;

void Stack::isEmpty()

{
if(top < 0)

{

cout <<"Stack is empty";

Narsimha Reddy Engineering College

NRCM

¥

else
{
cout <<"Stack is not empty";

}
}
Position of Top Status of Stack
-1 Stack is Empty
0 Only one element in Stack
N-1 Stack is Full
N Overflow state of Stack

Analysis of Stacks

Below mentioned are the time complexities for various operations that can be performed on the Stack data
structure.

. Push Operation : O(1)

. Pop Operation : O(1)

. Top Operation : O(1)

. Search Operation : O(n)

Queue Data Structures

Queue is also an abstract data type or a linear data structure, in which the first element is inserted from one
end called REAR(also called tail), and the deletion of exisiting element takes place from the other end
called as FRONT (also called head). This makes queue as FIFO data structure, which means that element
inserted first will also be removed first.

The process to add an element into queue is called Enqueue and the process of removal of an element from
queue is called Dequeue.

Narsimha Reddy Engineering College NRCM

engueuel) operation dequeue() operation
REAR FRONT

engueue() is the operation for adding an element into Queue.

dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

Basic features of Queue

1. Like Stack, Queue is also an ordered list of elements of similar data types.

2. Queue is a FIFO(First in First Out) structure.

3. Once a new element is inserted into the Queue, all the elements inserted before the new element in
the queue must be removed, to remove the new element.

4. peek() function is oftenly used to return the value of first element without dequeuing it.

Applications of Queue

Queue, as the name suggests is used whenever we need to have any group of objects in an order in which the
first one coming in, also gets out first while the others wait for there turn, like in the following scenarios :

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until
a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order as they

arrive, First come first served.

Implementation of Queue

Queue can be implemented using an Array, Stack or Linked List. The easiest way of implementing a queue
is by using an Array. Initially the head(FRONT) and the tail(REAR) of the queue points at the first index of
the array (starting the index of array from 0). As we add elements to the queue, the tail keeps on moving
ahead, always pointing to the position where the next element will be inserted, while the head remains at the
first index.

Narsimha Reddy Engineering College NRCM

(o] [2 31 [4 [51 [68] [7]

N

Head Tail
[or [[21 [31 [41 [51 [[7] Adding elements to
Queue
27
Head Tail
o] [[2 31 1[4 [51 [[7]
27 19 17 7
I\ removing element
Head Tail from Queue
(o] f[1] [2] [3] [[[EM
19 17 7 19 17 7
T N T AN
Head Tail Head Tail
[A] [B]

When we remove element from Queue, we can follow two possible approaches (mentioned [A] and [B] in
above diagram). In [A] approach, we remove the element at head position, and then one by one move all the
other elements on position forward. In approach [B] we remove the element from head position and then
move head to the next position.

In approach [A] there is an overhead of shifting the elements one position forward every time we remove the
first element. In approach [B] there is no such overhead, but whener we move head one position ahead, after
removal of first element, the size on Queue is reduced by one space each time.

/* Below program is wtitten in C++ language */

#define SIZE 100
class Queue

{
int a[100];
int rear; /l[same as tail
int front; //[same as head

public:

Narsimha Reddy Engineering College NRCM

Queue()

{
rear = front = -1;
}
void enqueue(int x); /ldeclaring enqueue, dequeue and display functions

int dequeue();
void display();

void Queue :: enqueue(int x)

{
if(rear = SIZE-1)
{
cout <<"Queue is full";
}
else
{
a[++rear] = x;
}
}
int queue :: dequeue()
{
return a[++front]; [[following approach [B], explained above
}
void queue :: display()
{
int i
for(i = front; i <= rear; i++)
{
cout << a[iJ;
}
}

To implement approach [A], you simply need to change the dequeue method, and include a for loop which
will shift all the remaining elements one position.

return a[0]; [Ireturning first element
for (i = 0; i < tail-1; i++) /[shifting all other elements
{

a[i]= a[i+1];

Narsimha Reddy Engineering College NRCM

tail--;

}

Analysis of Queue

. Enqueue : O(1)
. Dequeue : O(1)
. Size: O(1)

Queue Data Structure using Stack

A Queue is defined by its property of FIFO, which means First in First Out, i.e the element which is added
first is taken out first. Hence we can implement a Queue using Stack for storage instead of array.

For performing enqueue we require only one stack as we can directly push data into stack, but to
performdequeue we will require two Stacks, because we need to follow queue's FIFO property and if we
directly popany data element out of Stack, it will follow LIFO approach(Last in First Out).

Implementation of Queue using Stacks
In all we will require two Stacks, we will call them InStack and OutStack.
class Queue {
public:
Stack S1, S2;
/[defining methods
void enqueue(int x);

int dequeue();

We know that, Stack is a data structure, in which data can be added using push() method and data can be
deleted using pop() method. To learn about Stack, follow the link :

Adding Data to Queue

As our Queue has Stack for data storage in place of arrays, hence we will be adding data to Stack, which can
be done using the push() method, hence :
void Queue :: enqueue(int x) {

S1.push(x);

Removing Data from Queue

Narsimha Reddy Engineering College NRCM

http://www.studytonight.com/data-structures/stack-data-structure

remove the Last element first. So what to do now?
Pop elements from S1 and push into S2,

int x = S].pop();
S2 push(x);

S1 d S2

Once the complete

3rd Stack SI gets copied to Ist
52, then we can simply

Qnd call pop() on S2, it will Qnd
remove the Ist element.

Ist 3rd

N

Then push back elements to S1 from S2.

int Queue :: dequeue() {
while(S1.isEmpty()) {
x = S1.pop();
S2.push();
}

/[removing the element
x = S2.pop();

while(!S2.isEmpty()) {
x = S2.pop();
S1.push(x);

}

Narsimha Reddy Engineering College

When we say remove data from Queue, it always means taking out the First element first and so on, as we
have to follow the FIFO approach. But if we simply perform S1.pop() in our dequeue method, then it will

NRCM

return Xx;

Introduction to Linked Lists
Linked List is a linear data structure and it is very common data structure which consists of group of nodes

in a sequence which is divided in two parts. Each node consists of its own data and the address of the next
node and forms a chain. Linked Lists are used to create trees and graphs.

HEADER

Data | ADDR Data ADDR Data ADDR

Advantages of Linked Lists

. They are a dynamic in nature which allocates the memory when required.
. Insertion and deletion operations can be easily implemented.

. Stacks and queues can be easily executed.

. Linked List reduces the access time.

Disadvantages of Linked Lists

. The memory is wasted as pointers require extra memory for storage.
. No element can be accessed randomly; it has to access each node sequentially.
. Reverse Traversing is difficult in linked list.

Applications of Linked Lists

. Linked lists are used to implement stacks, queues, graphs, etc.
. Linked lists let you insert elements at the beginning and end of the list.
o In Linked Lists we don’t need to know the size in advance.

Types of Linked Lists

. Singly Linked List : Singly linked lists contain nodes which have a data part as well as an address
part i.e. next, which points to the next node in sequence of nodes. The operations we can perform on
singly linked lists are insertion, deletion and traversal.

Narsimha Reddy Engineering College NRCM

data next data next data next

3 10 2 S0 on...
t head
. Doubly Linked List : In a doubly linked list, each node contains two links the first link points to the

previous node and the next link points to the next node in the sequence.

start end
Prey Data Mext Prev Data Mext Prev Data Mext
N Circular Linked List : In the circular linked list the last node of the list contains the address of the

first node and forms a circular chain.

data next data next data next
3 10 2
HEAD Last Element points back to First

Linear Linked List

The element can be inserted in linked list in 2 ways :

. Insertion at beginning of the list.
. Insertion at the end of the list.

We will also be adding some more useful methods like :

. Checking whether Linked List is empty or not.
. Searching any element in the Linked List
. Deleting a particular Node from the List

Before inserting the node in the list we will create a class Node. Like shown below :

Narsimha Reddy Engineering College NRCM

class Node {
public:
int data;
/Ipointer to the next node

node* next;
node() {
data = 0;
next = NULL;
}
node(int x) {
data = x;
next = NULL;
}
}

We can also make the properties data and next as private, in that case we will need to add the getter and
setter methods to access them. You can add the getters and setter like this :

int getData() {
return data;

}

void setData(int x) {
this.data = x;

}

node* getNext() {
return next;

}

void setNext(node *n) {
this.next = n;

}

Node class basically creates a node for the data which you enter to be included into Linked List. Once the
node is created, we use various functions to fit in that node into the Linked List.

Linked List class

As we are following the complete OOPS methodology, hence we will create a separate class for Linked List,
which will have all its methods. Following will be the Linked List class :

class LinkedList {
public:
node *head;
/[declaring the functions

Narsimha Reddy Engineering College NRCM

/[function to add Node at front
int addAtFront(node *n);
/[function to check whether Linked list is empty
int iIsEmpty();
/[function to add Node at the End of list
int addAtEnd(node *n);
/[function to search a value
node* search(int Kk);
/[function to delete any Node
node* deleteNode(int x);

LinkedList() {
head = NULL;

Insertion at the Beginning
Steps to insert a Node at beginning :

The first Node is the Head for any Linked List.

When a new Linked List is instantiated, it just has the Head, which is Null.

Else, the Head holds the pointer to the first Node of the List.

When we want to add any Node at the front, we must make the head point to it.

And the Next pointer of the newly added Node, must point to the previous Head, whether it be
NULL(in case of new List) or the pointer to the first Node of the List.

The previous Head Node is now the second Node of Linked List, because the new Node is added at
the front.

ok~ w NP

o

int LinkedList :: addAtFront(node *n) {
int i =0;
//making the next of the new Node point to Head
n->next = head;
/Imaking the new Node as Head
head = n;
i++;
/lreturning the position where Node is added
return i;

}
Inserting at the End

NAISId Reuudy clgiieci g Loucygc INRNCIVA

Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.
2. If the Linked List is not empty then we find the last node, and make it' next to the new Node, hence
making the new node the last Node.

int LinkedList :: addAtEnd(node *n) {
INf list is empty
if(head == NULL) {
/Imaking the new Node as Head
head = n;
/Imaking the next pointe of the new Node as Null
n->next = NULL,;
}
else {
/[getting the last node
node *n2 = getLastNode();
n2->next = n;
}}
node* LinkedList :: getLastNode() {
/[creating a pointer pointing to Head
node* ptr = head;
/Nterating over the list till the node whose Next pointer points to null
//[Return that node, because that will be the last node.
while(ptr->next!=NULL) {
/it Next is not Null, take the pointer one step forward
ptr = ptr->next;
}
return ptr;
}
Searching for an Element in the List

In searhing we do not have to do much, we just need to traverse like we did while getting the last node, in
this case we will also compare the data of the Node. If we get the Node with the same data, we will return it,
otherwise we will make our pointer point the next Node, and so on.

node* LinkedList :: search(int x) {
node *ptr = head,
while(ptr '= NULL && ptr->data !'= x) {
[luntil we reach the end or we find a Node with data x, we keep moving
ptr = ptr->next;

Narsimha Reddy Engineering College NRCM

¥

return ptr;

Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which we want to delete
and then we delete it. In our approach, we will define a method which will take the data to be deleted as
argument, will use the search method to locate it and will then remove the Node from the List.

To remove any Node from the list, we need to do the following :

. If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to the
next element from the Node to be deleted.
o If the Node is in the middle somewhere, then find the Node before it, and make the Node before it

point to the Node next to it.

node* LinkedList :: deleteNode(int x) {
/[searching the Node with data x
node *n = search(x);
node *ptr = head;
if(ptr == n) {
ptr->next = n->next;
return n;
}
else {
while(ptr->next 1= n) {
ptr = ptr->next;
}
ptr->next = n->next;

return n;

Checking whether the List is empty or not
We just need to check whether the Head of the List is NULL or not.
int LinkedList :: isEmpty() {
if(head == NULL) {
return 1;

¥

else { return 0; }
Narsimna Kedady tngineering Lollege NRLM

Now you know a lot about how to handle List, how to traverse it, how to search an element. You can
yourself try to write new methods around the List.

If you are still figuring out, how to call all these methods, then below is how your main() method will look
like. As we have followed OOP standards, we will create the objects of LinkedL.ist class to initialize our
List and then we will create objects of Node class whenever we want to add any new node to the List.

int main() {
LinkedList L;

//We will ask value from user, read the value and add the value to our Node
int x;
cout <<"Please enter an integer value : ",
cin >> X;
Node *nil;

/[Creating a new node with data as x
nl = new Node(X);

/[Adding the node to the list
L.addAtFront(nl);

}

Similarly you can call any of the functions of the LinkedList class, add as many Nodes you want to your
List.

Circular Linked List

Circular Linked List is little more complicated linked data structure. In the circular linked list we can insert
elements anywhere in the list whereas in the array we cannot insert element anywhere in the list because it is
in the contiguous memory. In the circular linked list the previous element stores the address of the next
element and the last element stores the address of the starting element. The elements points to each other in a
circular way which forms a circular chain. The circular linked list has a dynamic size which means the
memory can be allocated when it is required.

data next data next data next
3 10 2
HEALD Last Element points back to First

Application of Circular Linked List

. The real life application where the circular linked list is used is our Personal Computers, where
multiple applications are running. All the running applications are kept in a circular linked list and the OS
gives a fixed time slot to all for running. The Operating System keeps on iterating over the linked list

until all the applications are completed.
Narsimha Reddy Engineering College NRCM

. Another example can be Multiplayer games. All the Players are kept in a Circular Linked List and
the pointer keeps on moving forward as a player's chance ends.

. Circular Linked List can also be used to create Circular Queue. In a Queue we have to keep two
pointers, FRONT and REAR in memory all the time, where as in Circular Linked List, only one pointer
is required.

Implementing Circular Linked List

Implementing a circular linked list is very easy and almost similar to linear linked list implementation, with
the only difference being that, in circular linked list the last Node will have it's next point to the Head of the
List. In Linear linked list the last Node simply holds NULL in it's next pointer.

So this will be oue Node class, as we have already studied in the lesson, it will be used to form the List.
class Node {

public:

int data;
/Ipointer to the next node

node* next;
node() {
data = 0O;
next = NULL;
}

node(int x) {
data = X;
next = NULL;

Circular Linked List

Circular Linked List class will be almost same as the Linked List class that we studied in the previous lesson,
with a few difference in the implementation of class methods.

class CircularLinkedList {
public:
node *head;

/[declaring the functions

Narsimha Reddy Engineering College NRCM

/[function to add Node at front
int addAtFront(node *n);
/[function to check whether Linked list is empty
int iIsEmpty();
/[function to add Node at the End of list
int addAtEnd(node *n);
/[function to search a value
node* search(int Kk);
/[function to delete any Node
node* deleteNode(int x);

CircularLinkedList() {
head = NULL;

ky

Insertion at the Beginning
Steps to insert a Node at beginning :

The first Node is the Head for any Linked List.

When a new Linked List is instantiated, it just has the Head, which is Null.

Else, the Head holds the pointer to the fisrt Node of the List.

When we want to add any Node at the front, we must make the head point to it.

And the Next pointer of the newly added Node, must point to the previous Head, whether it be
NULL(in case of new List) or the pointer to the first Node of the List.

The previous Head Node is now the second Node of Linked List, because the new Node is added at
the front.

ok~ wn P

o

int CircularLinkedList :: addAtFront(node *n) {
int i = 0;
[* If the list is empty */
if(head == NULL) {
n->next = head;
//making the new Node as Head
head = n;
i++;
}
else {
n->next = head;
/lget the Last Node and make its next point to new Node

Narsimha Reddy Engineering College NRCM

Node* last = getLastNode();
last->next = n;
/lalso make the head point to the new first Node

head = n;
i++;
}
/lreturning the position where Node is added
return i;
}

Insertion at the End
Steps to insert a Node at the end :

1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.
2. If the Linked List is not empty then we find the last node, and make it' next to the new Node, and
make the next of the Newly added Node point to the Head of the List.

int CircularLinkedList :: addAtEnd(node *n) {
INf list is empty
if(head == NULL) {
//making the new Node as Head
head = n;
//making the next pointer of the new Node as Null
n->next = NULL;
}
else {
/lgetting the last node
node *last = getLastNode();
last->next = n;
//making the next pointer of new node point to head
n->next = head;

¥

Searching for an Element in the List

In searhing we do not have to do much, we just need to traverse like we did while getting the last node, in
this case we will also compare the data of the Node. If we get the Node with the same data, we will return it,
otherwise we will make our pointer point the next Node, and so on.

node* CircularLinkedList :: search(int x) {
node *ptr = head,

NdAISINd reduy clhgilieer g Louege INIRUIVA

while(ptr '= NULL && ptr->data !'= x) {
ptr = ptr->next;
}
return ptr;
}
Deleting a Node from the List

Deleting a node can be done in many ways, like we first search the Node with data which we want to delete
and then we delete it. In our approach, we will define a method which will take the data to be deleted as
argument, will use the search method to locate it and will then remove the Node from the List.

To remove any Node from the list, we need to do the following :

. If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to the
next element from the Node to be deleted. And update the next pointer of the Last Node as well.

. If the Node is in the middle somewhere, then find the Node before it, and make the Node before it
point to the Node next to it.

. If the Node is at the end, then remove it and make the new last node point to the head.

node* CircularLinkedList :: deleteNode(int x) {
/[searching the Node with data x
node *n = search(x);
node *ptr = head;
if(ptr == NULL) {
cout <<"List is empty";
return NULL;
1} else if(ptr == n) {
ptr->next = n->next;
return n;
} else {
while(ptr->next 1= n) {
ptr = ptr->next;
}
ptr->next = n->next;
return n;

Narsimha Reddy Engineering College NRCM

CH SRILAXMI

(Ph.D.), M.Tech

Prof. Srilakshmi Cherukuri working as an AssistantProfessor &HoD in the CSE
(AI&ML) Department at NarsimhaReddy Engineering College, Hyderabad. She
secured a Master of Technology in CSE. She is pursuing a Ph.D., at GITAM
University, Hyderabad, India. She has been in the field of teaching profession for
more than 18 years. She has presented more than 25 papers in national and
International Journals, Conferences, and Symposiums. Her main areas of interest
include DeeplLearning andilmageProcessing. Throughout her career, Ch Srilakshmi
has been passionate about teaching and sharing her knowledge with others. She
has conducted numerous workshops and seminars on programming languages,

with a particular focus on C programming.

*Q}—'@ G%@f

O IN (o'~

X

-

-Ti. — __F.

>~ NARSIMHA REDDY ENGINEERING COLLEGE /" b A & ARG aith ‘&' Gradi
- UGC AUTONOMOUS INSTITUTION T

 Your roots to success... Maisammaguda (V), Kompally - 500100, Secunderabad, Telangana State, India Permanently affiliated to JNTUH

